Spaces:
Running
Running
File size: 2,147 Bytes
ad152ab bae6852 ad152ab bae6852 d39f3fd 0b8919f d39f3fd bae6852 d39f3fd bae6852 ad152ab bae6852 d39f3fd bae6852 d39f3fd bae6852 d39f3fd bae6852 ad152ab bae6852 ad152ab bae6852 ad152ab bae6852 ad152ab bae6852 ad152ab bae6852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
from fastapi import FastAPI, HTTPException
from typing import List
from pydantic import BaseModel
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from IndicTransToolkit import IndicProcessor
from fastapi.middleware.cors import CORSMiddleware
import torch
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
model = AutoModelForSeq2SeqLM.from_pretrained(
"ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
"ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True
)
ip = IndicProcessor(inference=True)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(DEVICE)
def translate_text(sentences: List[str], target_lang: str):
try:
src_lang = "eng_Latn"
batch = ip.preprocess_batch(sentences, src_lang=src_lang, tgt_lang=target_lang)
inputs = tokenizer(
batch,
truncation=True,
padding="longest",
return_tensors="pt",
return_attention_mask=True,
).to(DEVICE)
with torch.no_grad():
generated_tokens = model.generate(
**inputs,
use_cache=True,
min_length=0,
max_length=256,
num_beams=5,
num_return_sequences=1,
)
with tokenizer.as_target_tokenizer():
generated_tokens = tokenizer.batch_decode(
generated_tokens.detach().cpu().tolist(),
skip_special_tokens=True,
)
return generated_tokens
except Exception as e:
return str(e)
@app.get("/")
def read_root():
return {"Hello": "World"}
class TranslateRequest(BaseModel):
sentences: List[str]
target_lang: str
@app.post("/translate/")
def translate(request: TranslateRequest):
try:
result = translate_text(request.sentences, request.target_lang)
return result
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
|