Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from typing import List
|
4 |
+
import torch
|
5 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
6 |
+
from IndicTransToolkit import IndicProcessor
|
7 |
+
|
8 |
+
# Initialize FastAPI app
|
9 |
+
app = FastAPI(
|
10 |
+
title="Indic Translation API",
|
11 |
+
description="API for translating text between English and Indic languages",
|
12 |
+
version="1.0.0"
|
13 |
+
)
|
14 |
+
|
15 |
+
# Define request body model
|
16 |
+
class InputData(BaseModel):
|
17 |
+
sentences: List[str]
|
18 |
+
target_lang: str
|
19 |
+
|
20 |
+
class Config:
|
21 |
+
schema_extra = {
|
22 |
+
"example": {
|
23 |
+
"sentences": ["Hello, how are you?", "What is your name?"],
|
24 |
+
"target_lang": "hin_Deva"
|
25 |
+
}
|
26 |
+
}
|
27 |
+
|
28 |
+
# Initialize models and processors
|
29 |
+
try:
|
30 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
31 |
+
"ai4bharat/indictrans2-en-indic-1B",
|
32 |
+
trust_remote_code=True
|
33 |
+
)
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
35 |
+
"ai4bharat/indictrans2-en-indic-1B",
|
36 |
+
trust_remote_code=True
|
37 |
+
)
|
38 |
+
ip = IndicProcessor(inference=True)
|
39 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
40 |
+
model = model.to(DEVICE)
|
41 |
+
except Exception as e:
|
42 |
+
raise RuntimeError(f"Failed to load models: {str(e)}")
|
43 |
+
|
44 |
+
@app.get("/")
|
45 |
+
async def root():
|
46 |
+
"""Root endpoint returning API information"""
|
47 |
+
return {
|
48 |
+
"message": "Welcome to the Indic Translation API",
|
49 |
+
"status": "active",
|
50 |
+
"supported_languages": [
|
51 |
+
"hin_Deva", # Hindi
|
52 |
+
"ben_Beng", # Bengali
|
53 |
+
"tam_Taml", # Tamil
|
54 |
+
# Add other supported languages here
|
55 |
+
]
|
56 |
+
}
|
57 |
+
|
58 |
+
@app.post("/translate/")
|
59 |
+
async def translate(input_data: InputData):
|
60 |
+
"""
|
61 |
+
Translate text from English to specified Indic language
|
62 |
+
|
63 |
+
Args:
|
64 |
+
input_data: InputData object containing sentences and target language
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
Dictionary containing translated text
|
68 |
+
"""
|
69 |
+
try:
|
70 |
+
# Source language is always English
|
71 |
+
src_lang = "eng_Latn"
|
72 |
+
tgt_lang = input_data.target_lang
|
73 |
+
|
74 |
+
# Preprocess the input sentences
|
75 |
+
batch = ip.preprocess_batch(
|
76 |
+
input_data.sentences,
|
77 |
+
src_lang=src_lang,
|
78 |
+
tgt_lang=tgt_lang
|
79 |
+
)
|
80 |
+
|
81 |
+
# Tokenize the sentences
|
82 |
+
inputs = tokenizer(
|
83 |
+
batch,
|
84 |
+
truncation=True,
|
85 |
+
padding="longest",
|
86 |
+
return_tensors="pt",
|
87 |
+
return_attention_mask=True
|
88 |
+
).to(DEVICE)
|
89 |
+
|
90 |
+
# Generate translations
|
91 |
+
with torch.no_grad():
|
92 |
+
generated_tokens = model.generate(
|
93 |
+
**inputs,
|
94 |
+
use_cache=True,
|
95 |
+
min_length=0,
|
96 |
+
max_length=256,
|
97 |
+
num_beams=5,
|
98 |
+
num_return_sequences=1
|
99 |
+
)
|
100 |
+
|
101 |
+
# Decode the generated tokens
|
102 |
+
with tokenizer.as_target_tokenizer():
|
103 |
+
generated_tokens = tokenizer.batch_decode(
|
104 |
+
generated_tokens.detach().cpu().tolist(),
|
105 |
+
skip_special_tokens=True,
|
106 |
+
clean_up_tokenization_spaces=True
|
107 |
+
)
|
108 |
+
|
109 |
+
# Postprocess the translations
|
110 |
+
translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang)
|
111 |
+
|
112 |
+
return {
|
113 |
+
"translations": translations,
|
114 |
+
"source_language": src_lang,
|
115 |
+
"target_language": tgt_lang
|
116 |
+
}
|
117 |
+
|
118 |
+
except Exception as e:
|
119 |
+
raise HTTPException(
|
120 |
+
status_code=500,
|
121 |
+
detail=f"Translation error: {str(e)}"
|
122 |
+
)
|
123 |
+
|
124 |
+
# Add health check endpoint
|
125 |
+
@app.get("/health")
|
126 |
+
async def health_check():
|
127 |
+
"""Health check endpoint"""
|
128 |
+
return {"status": "healthy"}
|