davanstrien's picture
davanstrien HF staff
check for previous vote
b2e385a
raw
history blame
5.37 kB
import hashlib
import json
import os
import random
import uuid
from datetime import datetime
from pathlib import Path
import gradio as gr
from huggingface_hub import CommitScheduler, InferenceClient, get_token, login
from openai import OpenAI
from prompts import basic_prompt, detailed_genre_description_prompt
from theme import TufteInspired
# Ensure you're logged in to Hugging Face
login(os.getenv("HF_TOKEN"))
client = OpenAI(
base_url="https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct/v1",
api_key=get_token(),
)
# Set up dataset storage
dataset_folder = Path("dataset")
dataset_folder.mkdir(exist_ok=True)
# Function to get the latest dataset file
def get_latest_dataset_file():
files = list(dataset_folder.glob("data_*.jsonl"))
return max(files, key=os.path.getctime) if files else None
# Check for existing dataset and create or append to it
if latest_file := get_latest_dataset_file():
dataset_file = latest_file
print(f"Appending to existing dataset file: {dataset_file}")
else:
dataset_file = dataset_folder / f"data_{uuid.uuid4()}.jsonl"
print(f"Creating new dataset file: {dataset_file}")
# Set up CommitScheduler for dataset uploads
repo_id = "davanstrien/summer-reading-preferences"
scheduler = CommitScheduler(
repo_id=repo_id,
repo_type="dataset",
folder_path=dataset_folder,
path_in_repo="data",
every=1, # Upload every 5 minutes
)
# Add a dictionary to store votes
votes = {}
def generate_prompt():
if random.choice([True, False]):
return detailed_genre_description_prompt()
else:
return basic_prompt()
def get_and_store_prompt():
prompt = generate_prompt()
print(prompt) # Keep this for debugging
return prompt
def generate_blurb(prompt):
max_tokens = random.randint(100, 1000)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "user", "content": prompt},
],
stream=True,
max_tokens=max_tokens,
)
full_text = ""
for message in chat_completion:
full_text += message.choices[0].delta.content
yield full_text
def generate_vote_id(user_id, blurb):
# Create a unique identifier for this vote opportunity
return hashlib.md5(f"{user_id}:{blurb}".encode()).hexdigest()
# Modified log_blurb_and_vote function
def log_blurb_and_vote(prompt, blurb, vote, user_info: gr.OAuthProfile | None, *args):
user_id = user_info.username if user_info is not None else str(uuid.uuid4())
vote_id = generate_vote_id(user_id, blurb)
if vote_id in votes:
return "You've already voted on this blurb!"
votes[vote_id] = vote
log_entry = {
"timestamp": datetime.now().isoformat(),
"prompt": prompt,
"blurb": blurb,
"vote": vote,
"user_id": user_id,
}
with scheduler.lock:
with dataset_file.open("a") as f:
f.write(json.dumps(log_entry) + "\n")
gr.Info("Thank you for voting! Your feedback will be synced to the dataset.")
return f"Logged: {vote} by user {user_id}"
# Create custom theme
tufte_theme = TufteInspired()
# Create Gradio interface
with gr.Blocks(theme=tufte_theme) as demo:
gr.Markdown("<h1 style='text-align: center;'>Would you read this book?</h1>")
gr.Markdown(
"""<p style='text-align: center;'>Looking for your next summer read?
Would you read a book based on this LLM generated blurb? <br> Your vote will be added to <a href="https://huggingface.co/datasets/your-username/your-dataset-repo">this</a> Hugging Face dataset</p>"""
)
# Add the login button
with gr.Row():
login_btn = gr.LoginButton(size="sm")
with gr.Row():
generate_btn = gr.Button("Create a book", variant="primary")
prompt_state = gr.State()
blurb_output = gr.Markdown(label="Book blurb")
user_state = gr.State()
with gr.Row(visible=False) as voting_row:
upvote_btn = gr.Button("πŸ‘ would read")
downvote_btn = gr.Button("πŸ‘Ž wouldn't read")
vote_output = gr.Textbox(label="Vote Status", interactive=False, visible=False)
def generate_and_show(prompt, user_info):
# Reset votes for new blurb
global votes
votes = {}
return "Generating...", gr.Row.update(visible=False), user_info
def show_voting_buttons(blurb):
return blurb, gr.Row.update(visible=True)
generate_btn.click(get_and_store_prompt, outputs=prompt_state).then(
generate_and_show,
inputs=[prompt_state, login_btn],
outputs=[blurb_output, voting_row, user_state],
).then(generate_blurb, inputs=prompt_state, outputs=blurb_output).then(
show_voting_buttons, inputs=blurb_output, outputs=[blurb_output, voting_row]
)
upvote_btn.click(
log_blurb_and_vote,
inputs=[
prompt_state,
blurb_output,
gr.Textbox(value="upvote", visible=False),
user_state,
],
outputs=vote_output,
)
downvote_btn.click(
log_blurb_and_vote,
inputs=[
prompt_state,
blurb_output,
gr.Textbox(value="downvote", visible=False),
user_state,
],
outputs=vote_output,
)
if __name__ == "__main__":
demo.launch(debug=True)