davanstrien HF staff commited on
Commit
2655ad8
·
1 Parent(s): 9ed8bcd

update logging

Browse files
Files changed (1) hide show
  1. app.py +26 -29
app.py CHANGED
@@ -2,39 +2,28 @@ import gradio as gr
2
  import json
3
  from datetime import datetime
4
  from theme import TufteInspired
5
- import glob
6
- import os
7
  import uuid
8
- from pathlib import Path
9
  from huggingface_hub import InferenceClient
10
  from openai import OpenAI
11
- from huggingface_hub import get_token
12
- from huggingface_hub import CommitScheduler, hf_hub_download, login
13
-
14
  from prompts import detailed_genre_description_prompt, basic_prompt
15
  import random
16
- from huggingface_hub import login, get_token
17
 
 
18
  login(get_token())
19
- # TODOs
20
- # 1. Add a login button
21
- # 2. Prompt library expand
22
- # 3. log user if logged in
23
-
24
 
25
  client = OpenAI(
26
  base_url="https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct/v1",
27
  api_key=get_token(),
28
  )
29
 
30
-
31
  def generate_prompt():
32
  if random.choice([True, False]):
33
  return detailed_genre_description_prompt()
34
  else:
35
  return basic_prompt()
36
 
37
-
38
  def generate_blurb():
39
  max_tokens = random.randint(100, 1000)
40
  prompt = generate_prompt()
@@ -52,15 +41,23 @@ def generate_blurb():
52
  full_text += message.choices[0].delta.content
53
  yield full_text
54
 
55
-
56
  # Function to log blurb and vote
57
- def log_blurb_and_vote(blurb, vote):
58
- log_entry = {"timestamp": datetime.now().isoformat(), "blurb": blurb, "vote": vote}
 
 
 
 
 
 
 
 
 
 
59
  with open("blurb_log.jsonl", "a") as f:
60
  f.write(json.dumps(log_entry) + "\n")
61
- gr.Info("Thank you for voting!")
62
- return f"Logged: {vote}"
63
-
64
 
65
  # Create custom theme
66
  tufte_theme = TufteInspired()
@@ -71,10 +68,11 @@ with gr.Blocks(theme=tufte_theme) as demo:
71
  gr.Markdown(
72
  """<p style='text-align: center;'>Looking for your next summer read?
73
  Would you read a book based on this LLM generated blurb? <br> Your vote will be added to <a href="https://example.com">this</a> Hugging Face dataset</p>"""
74
- + """"""
75
  )
76
- gr.LoginButton(size="sm")
77
- # user_name = gr.Textbox(label="User Name", placeholder="Enter your name")
 
 
78
  with gr.Row():
79
  generate_btn = gr.Button("Create a book", variant="primary")
80
  blurb_output = gr.Markdown(label="Book blurb")
@@ -90,16 +88,15 @@ with gr.Blocks(theme=tufte_theme) as demo:
90
  show_voting_buttons, inputs=blurb_output, outputs=[blurb_output, voting_row]
91
  )
92
  upvote_btn.click(
93
- lambda x: log_blurb_and_vote(x, "upvote"),
94
- inputs=blurb_output,
95
  outputs=vote_output,
96
  )
97
  downvote_btn.click(
98
- lambda x: log_blurb_and_vote(x, "downvote"),
99
- inputs=blurb_output,
100
  outputs=vote_output,
101
  )
102
 
103
-
104
  if __name__ == "__main__":
105
- demo.launch()
 
2
  import json
3
  from datetime import datetime
4
  from theme import TufteInspired
 
 
5
  import uuid
 
6
  from huggingface_hub import InferenceClient
7
  from openai import OpenAI
8
+ from huggingface_hub import get_token, login
 
 
9
  from prompts import detailed_genre_description_prompt, basic_prompt
10
  import random
11
+ import os
12
 
13
+ # Ensure you're logged in to Hugging Face
14
  login(get_token())
 
 
 
 
 
15
 
16
  client = OpenAI(
17
  base_url="https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct/v1",
18
  api_key=get_token(),
19
  )
20
 
 
21
  def generate_prompt():
22
  if random.choice([True, False]):
23
  return detailed_genre_description_prompt()
24
  else:
25
  return basic_prompt()
26
 
 
27
  def generate_blurb():
28
  max_tokens = random.randint(100, 1000)
29
  prompt = generate_prompt()
 
41
  full_text += message.choices[0].delta.content
42
  yield full_text
43
 
 
44
  # Function to log blurb and vote
45
+ def log_blurb_and_vote(blurb, vote, user_info: gr.OAuthProfile | None, *args):
46
+ if user_info is not None:
47
+ user_id = user_info.username
48
+ else:
49
+ user_id = str(uuid.uuid4())
50
+
51
+ log_entry = {
52
+ "timestamp": datetime.now().isoformat(),
53
+ "blurb": blurb,
54
+ "vote": vote,
55
+ "user_id": user_id
56
+ }
57
  with open("blurb_log.jsonl", "a") as f:
58
  f.write(json.dumps(log_entry) + "\n")
59
+ gr.Info("Thank you for voting!")
60
+ return f"Logged: {vote} by user {user_id}"
 
61
 
62
  # Create custom theme
63
  tufte_theme = TufteInspired()
 
68
  gr.Markdown(
69
  """<p style='text-align: center;'>Looking for your next summer read?
70
  Would you read a book based on this LLM generated blurb? <br> Your vote will be added to <a href="https://example.com">this</a> Hugging Face dataset</p>"""
 
71
  )
72
+
73
+ # Add the login button
74
+ login_btn = gr.LoginButton()
75
+
76
  with gr.Row():
77
  generate_btn = gr.Button("Create a book", variant="primary")
78
  blurb_output = gr.Markdown(label="Book blurb")
 
88
  show_voting_buttons, inputs=blurb_output, outputs=[blurb_output, voting_row]
89
  )
90
  upvote_btn.click(
91
+ log_blurb_and_vote,
92
+ inputs=[blurb_output, gr.Textbox(value="upvote", visible=False), login_btn],
93
  outputs=vote_output,
94
  )
95
  downvote_btn.click(
96
+ log_blurb_and_vote,
97
+ inputs=[blurb_output, gr.Textbox(value="downvote", visible=False), login_btn],
98
  outputs=vote_output,
99
  )
100
 
 
101
  if __name__ == "__main__":
102
+ demo.launch(debug=True)