Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,42 @@
|
|
1 |
-
|
2 |
import gradio as gr
|
3 |
import json
|
|
|
4 |
from datetime import datetime
|
5 |
from theme import TufteInspired
|
6 |
-
from transformers import AutoTokenizer
|
7 |
-
from transformers import pipeline
|
8 |
-
import torch
|
9 |
-
|
10 |
from huggingface_hub import login
|
|
|
11 |
import os
|
|
|
|
|
12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
13 |
login(HF_TOKEN)
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
pipeline = pipeline(
|
20 |
-
"text-generation",
|
21 |
-
model=model_id,
|
22 |
-
model_kwargs={"torch_dtype": torch.bfloat16},
|
23 |
-
device="cuda",
|
24 |
-
)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
|
28 |
-
|
29 |
def generate_blurb():
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# Function to log blurb and vote
|
34 |
def log_blurb_and_vote(blurb, vote):
|
@@ -47,12 +55,12 @@ tufte_theme = TufteInspired()
|
|
47 |
# Create Gradio interface
|
48 |
with gr.Blocks(theme=tufte_theme) as demo:
|
49 |
gr.Markdown("<h1 style='text-align: center;'>Would you read it?</h1>")
|
50 |
-
gr.Markdown("Click the button to generate a blurb for a made-up book, then vote on its quality.")
|
51 |
|
52 |
with gr.Row():
|
53 |
generate_btn = gr.Button("Write a Blurb", variant="primary")
|
54 |
|
55 |
-
blurb_output = gr.Textbox(label="Generated Blurb", lines=
|
56 |
|
57 |
with gr.Row():
|
58 |
upvote_btn = gr.Button("π would read")
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import json
|
3 |
+
import random
|
4 |
from datetime import datetime
|
5 |
from theme import TufteInspired
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
7 |
from huggingface_hub import login
|
8 |
+
import torch
|
9 |
import os
|
10 |
+
import spaces
|
11 |
+
|
12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
13 |
login(HF_TOKEN)
|
14 |
|
15 |
+
# List of models to choose from
|
16 |
+
model_list = [
|
17 |
+
"meta-llama/Llama-2-7b-chat-hf",
|
18 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Function to load a random model
|
21 |
+
@spaces.GPU(duration=120) # Allowing extra time for model loading
|
22 |
+
def load_random_model():
|
23 |
+
model_id = random.choice(model_list)
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, add_special_tokens=True)
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
|
26 |
+
return model_id, model, tokenizer
|
27 |
|
28 |
|
29 |
+
@spaces.GPU
|
30 |
def generate_blurb():
|
31 |
+
model_id, model, tokenizer = load_random_model()
|
32 |
+
prompt = "Write a blurb for a made-up book:"
|
33 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
34 |
+
|
35 |
+
with torch.no_grad():
|
36 |
+
outputs = model.generate(**inputs, max_length=200, num_return_sequences=1)
|
37 |
+
|
38 |
+
blurb = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
39 |
+
return f"Model used: {model_id}\n\nBlurb: {blurb}"
|
40 |
|
41 |
# Function to log blurb and vote
|
42 |
def log_blurb_and_vote(blurb, vote):
|
|
|
55 |
# Create Gradio interface
|
56 |
with gr.Blocks(theme=tufte_theme) as demo:
|
57 |
gr.Markdown("<h1 style='text-align: center;'>Would you read it?</h1>")
|
58 |
+
gr.Markdown("Click the button to generate a blurb for a made-up book using a random model, then vote on its quality.")
|
59 |
|
60 |
with gr.Row():
|
61 |
generate_btn = gr.Button("Write a Blurb", variant="primary")
|
62 |
|
63 |
+
blurb_output = gr.Textbox(label="Generated Blurb", lines=8, interactive=False)
|
64 |
|
65 |
with gr.Row():
|
66 |
upvote_btn = gr.Button("π would read")
|