Spaces:
Running
Running
Commit
Β·
e6d141a
1
Parent(s):
0537fbe
chore: Refactor code for improved UI layout and readability
Browse files
app.py
CHANGED
@@ -1,72 +1,23 @@
|
|
1 |
-
import
|
2 |
import json
|
3 |
-
import os
|
4 |
-
import random
|
5 |
-
import uuid
|
6 |
from datetime import datetime
|
7 |
-
from pathlib import Path
|
8 |
-
|
9 |
-
import gradio as gr
|
10 |
-
from huggingface_hub import CommitScheduler, get_token, login
|
11 |
-
from openai import OpenAI
|
12 |
-
|
13 |
-
from prompts import basic_prompt, detailed_genre_description_prompt
|
14 |
from theme import TufteInspired
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Ensure you're logged in to Hugging Face
|
17 |
-
login(
|
18 |
-
|
19 |
-
# Define available models
|
20 |
-
MODELS = [
|
21 |
-
"meta-llama/Meta-Llama-3-70B-Instruct",
|
22 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
23 |
-
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
24 |
-
]
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
def create_client(model_id):
|
32 |
-
return OpenAI(
|
33 |
-
base_url=f"https://api-inference.huggingface.co/models/{model_id}/v1",
|
34 |
-
api_key=get_token(),
|
35 |
-
)
|
36 |
-
|
37 |
-
|
38 |
-
# Set up dataset storage
|
39 |
-
dataset_folder = Path("dataset")
|
40 |
-
dataset_folder.mkdir(exist_ok=True)
|
41 |
-
|
42 |
-
|
43 |
-
# Function to get the latest dataset file
|
44 |
-
def get_latest_dataset_file():
|
45 |
-
files = list(dataset_folder.glob("data_*.jsonl"))
|
46 |
-
return max(files, key=os.path.getctime) if files else None
|
47 |
-
|
48 |
-
|
49 |
-
# Check for existing dataset and create or append to it
|
50 |
-
if latest_file := get_latest_dataset_file():
|
51 |
-
dataset_file = latest_file
|
52 |
-
print(f"Appending to existing dataset file: {dataset_file}")
|
53 |
-
else:
|
54 |
-
dataset_file = dataset_folder / f"data_{uuid.uuid4()}.jsonl"
|
55 |
-
print(f"Creating new dataset file: {dataset_file}")
|
56 |
-
|
57 |
-
# Set up CommitScheduler for dataset uploads
|
58 |
-
repo_id = "davanstrien/summer-reading-preferences"
|
59 |
-
scheduler = CommitScheduler(
|
60 |
-
repo_id=repo_id,
|
61 |
-
repo_type="dataset",
|
62 |
-
folder_path=dataset_folder,
|
63 |
-
path_in_repo="data",
|
64 |
-
every=1, # Upload every minute
|
65 |
)
|
66 |
|
67 |
-
# Global dictionary to store votes
|
68 |
-
votes = {}
|
69 |
-
|
70 |
|
71 |
def generate_prompt():
|
72 |
if random.choice([True, False]):
|
@@ -82,8 +33,6 @@ def get_and_store_prompt():
|
|
82 |
|
83 |
|
84 |
def generate_blurb(prompt):
|
85 |
-
model_id = get_random_model()
|
86 |
-
client = create_client(model_id)
|
87 |
max_tokens = random.randint(100, 1000)
|
88 |
chat_completion = client.chat.completions.create(
|
89 |
model="tgi",
|
@@ -96,44 +45,23 @@ def generate_blurb(prompt):
|
|
96 |
full_text = ""
|
97 |
for message in chat_completion:
|
98 |
full_text += message.choices[0].delta.content
|
99 |
-
yield full_text
|
100 |
-
return full_text, model_id # Return final result with model_id
|
101 |
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
def log_blurb_and_vote(
|
108 |
-
prompt,
|
109 |
-
blurb,
|
110 |
-
vote,
|
111 |
-
model_id,
|
112 |
-
user_info: gr.OAuthProfile | None,
|
113 |
-
):
|
114 |
user_id = user_info.username if user_info is not None else str(uuid.uuid4())
|
115 |
-
vote_id = generate_vote_id(user_id, blurb)
|
116 |
-
|
117 |
-
if vote_id in votes:
|
118 |
-
gr.Info("You've already voted on this blurb!")
|
119 |
-
return None, gr.Row.update(visible=False)
|
120 |
-
|
121 |
-
votes[vote_id] = vote
|
122 |
-
|
123 |
log_entry = {
|
124 |
"timestamp": datetime.now().isoformat(),
|
125 |
"prompt": prompt,
|
126 |
"blurb": blurb,
|
127 |
"vote": vote,
|
128 |
"user_id": user_id,
|
129 |
-
"model_id": model_id,
|
130 |
}
|
131 |
-
with
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
gr.Info("Thank you for voting! Your feedback will be synced to the dataset.")
|
136 |
-
return f"Logged: {vote} by user {user_id}", gr.Row.update(visible=False)
|
137 |
|
138 |
|
139 |
# Create custom theme
|
@@ -144,41 +72,34 @@ with gr.Blocks(theme=tufte_theme) as demo:
|
|
144 |
gr.Markdown("<h1 style='text-align: center;'>Would you read this book?</h1>")
|
145 |
gr.Markdown(
|
146 |
"""<p style='text-align: center;'>Looking for your next summer read?
|
147 |
-
Would you read a book based on this LLM generated blurb? <br> Your vote will be added to <a href="https://
|
148 |
)
|
149 |
|
150 |
-
|
151 |
-
|
|
|
152 |
with gr.Row():
|
153 |
generate_btn = gr.Button("Create a book", variant="primary")
|
154 |
|
155 |
prompt_state = gr.State()
|
156 |
blurb_output = gr.Markdown(label="Book blurb")
|
157 |
-
user_state = gr.State()
|
158 |
-
model_state = gr.State()
|
159 |
|
160 |
with gr.Row(visible=False) as voting_row:
|
161 |
upvote_btn = gr.Button("π would read")
|
162 |
downvote_btn = gr.Button("π wouldn't read")
|
163 |
|
164 |
-
vote_output = gr.Textbox(label="Vote Status", interactive=False, visible=
|
165 |
|
166 |
-
def generate_and_show(prompt
|
167 |
-
return "Generating...", gr.Row
|
168 |
|
169 |
-
def show_voting_buttons(blurb
|
170 |
-
return blurb, gr.Row
|
171 |
|
172 |
generate_btn.click(get_and_store_prompt, outputs=prompt_state).then(
|
173 |
-
generate_and_show,
|
174 |
-
|
175 |
-
outputs=[blurb_output, voting_row
|
176 |
-
).then(
|
177 |
-
generate_blurb, inputs=prompt_state, outputs=[blurb_output, model_state]
|
178 |
-
).then(
|
179 |
-
show_voting_buttons,
|
180 |
-
inputs=[blurb_output, model_state],
|
181 |
-
outputs=[blurb_output, voting_row, model_state],
|
182 |
)
|
183 |
|
184 |
upvote_btn.click(
|
@@ -187,10 +108,9 @@ with gr.Blocks(theme=tufte_theme) as demo:
|
|
187 |
prompt_state,
|
188 |
blurb_output,
|
189 |
gr.Textbox(value="upvote", visible=False),
|
190 |
-
|
191 |
-
user_state,
|
192 |
],
|
193 |
-
outputs=
|
194 |
)
|
195 |
downvote_btn.click(
|
196 |
log_blurb_and_vote,
|
@@ -198,10 +118,9 @@ with gr.Blocks(theme=tufte_theme) as demo:
|
|
198 |
prompt_state,
|
199 |
blurb_output,
|
200 |
gr.Textbox(value="downvote", visible=False),
|
201 |
-
|
202 |
-
user_state,
|
203 |
],
|
204 |
-
outputs=
|
205 |
)
|
206 |
|
207 |
if __name__ == "__main__":
|
|
|
1 |
+
import gradio as gr
|
2 |
import json
|
|
|
|
|
|
|
3 |
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from theme import TufteInspired
|
5 |
+
import uuid
|
6 |
+
from huggingface_hub import InferenceClient
|
7 |
+
from openai import OpenAI
|
8 |
+
from huggingface_hub import get_token, login
|
9 |
+
from prompts import detailed_genre_description_prompt, basic_prompt
|
10 |
+
import random
|
11 |
+
import os
|
12 |
|
13 |
# Ensure you're logged in to Hugging Face
|
14 |
+
login(get_token())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
client = OpenAI(
|
17 |
+
base_url="https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct/v1",
|
18 |
+
api_key=get_token(),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
)
|
20 |
|
|
|
|
|
|
|
21 |
|
22 |
def generate_prompt():
|
23 |
if random.choice([True, False]):
|
|
|
33 |
|
34 |
|
35 |
def generate_blurb(prompt):
|
|
|
|
|
36 |
max_tokens = random.randint(100, 1000)
|
37 |
chat_completion = client.chat.completions.create(
|
38 |
model="tgi",
|
|
|
45 |
full_text = ""
|
46 |
for message in chat_completion:
|
47 |
full_text += message.choices[0].delta.content
|
48 |
+
yield full_text
|
|
|
49 |
|
50 |
|
51 |
+
# Function to log blurb and vote
|
52 |
+
def log_blurb_and_vote(prompt, blurb, vote, user_info: gr.OAuthProfile | None, *args):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
user_id = user_info.username if user_info is not None else str(uuid.uuid4())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
log_entry = {
|
55 |
"timestamp": datetime.now().isoformat(),
|
56 |
"prompt": prompt,
|
57 |
"blurb": blurb,
|
58 |
"vote": vote,
|
59 |
"user_id": user_id,
|
|
|
60 |
}
|
61 |
+
with open("blurb_log.jsonl", "a") as f:
|
62 |
+
f.write(json.dumps(log_entry) + "\n")
|
63 |
+
gr.Info("Thank you for voting!")
|
64 |
+
return f"Logged: {vote} by user {user_id}"
|
|
|
|
|
65 |
|
66 |
|
67 |
# Create custom theme
|
|
|
72 |
gr.Markdown("<h1 style='text-align: center;'>Would you read this book?</h1>")
|
73 |
gr.Markdown(
|
74 |
"""<p style='text-align: center;'>Looking for your next summer read?
|
75 |
+
Would you read a book based on this LLM generated blurb? <br> Your vote will be added to <a href="https://example.com">this</a> Hugging Face dataset</p>"""
|
76 |
)
|
77 |
|
78 |
+
# Add the login button
|
79 |
+
login_btn = gr.LoginButton()
|
80 |
+
|
81 |
with gr.Row():
|
82 |
generate_btn = gr.Button("Create a book", variant="primary")
|
83 |
|
84 |
prompt_state = gr.State()
|
85 |
blurb_output = gr.Markdown(label="Book blurb")
|
|
|
|
|
86 |
|
87 |
with gr.Row(visible=False) as voting_row:
|
88 |
upvote_btn = gr.Button("π would read")
|
89 |
downvote_btn = gr.Button("π wouldn't read")
|
90 |
|
91 |
+
vote_output = gr.Textbox(label="Vote Status", interactive=False, visible=False)
|
92 |
|
93 |
+
def generate_and_show(prompt):
|
94 |
+
return gr.Markdown.update(value="Generating..."), gr.Row(visible=False)
|
95 |
|
96 |
+
def show_voting_buttons(blurb):
|
97 |
+
return blurb, gr.Row(visible=True)
|
98 |
|
99 |
generate_btn.click(get_and_store_prompt, outputs=prompt_state).then(
|
100 |
+
generate_and_show, inputs=prompt_state, outputs=[blurb_output, voting_row]
|
101 |
+
).then(generate_blurb, inputs=prompt_state, outputs=blurb_output).then(
|
102 |
+
show_voting_buttons, inputs=blurb_output, outputs=[blurb_output, voting_row]
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
)
|
104 |
|
105 |
upvote_btn.click(
|
|
|
108 |
prompt_state,
|
109 |
blurb_output,
|
110 |
gr.Textbox(value="upvote", visible=False),
|
111 |
+
login_btn,
|
|
|
112 |
],
|
113 |
+
outputs=vote_output,
|
114 |
)
|
115 |
downvote_btn.click(
|
116 |
log_blurb_and_vote,
|
|
|
118 |
prompt_state,
|
119 |
blurb_output,
|
120 |
gr.Textbox(value="downvote", visible=False),
|
121 |
+
login_btn,
|
|
|
122 |
],
|
123 |
+
outputs=vote_output,
|
124 |
)
|
125 |
|
126 |
if __name__ == "__main__":
|