demo / app.py
daveokpare's picture
Add script for tortoise
1417ec9
import os, sys
import tempfile
import gradio as gr
import numpy as np
from typing import Tuple, List
# Setup and installation
os.system("git clone https://github.com/neonbjb/tortoise-tts.git")
sys.path.append("./tortoise-tts/")
os.system("pip install -r ./tortoise-tts/requirements.txt")
os.system("python ./tortoise-tts/setup.py install")
import torch
import torchaudio
import torch.nn as nn
import torch.nn.functional as F
from tortoise.api import TextToSpeech
from tortoise.utils.audio import load_audio, load_voice
# Download and instantiate model
tts = TextToSpeech()
# Display parameters
VOICES = [
"random",
"train_atkins",
"train_daws",
"train_dotrice",
"train_dreams",
"train_empire",
"train_grace",
"train_kennard",
"train_lescault",
"train_mouse",
"angie",
"applejack",
"daniel",
"deniro",
"emma",
"freeman",
"geralt",
"halle",
"jlaw",
"lj",
"mol",
"myself",
"pat",
"pat2",
"rainbow",
"snakes",
"tim_reynolds",
"tom",
"weaver",
"william",
]
DEFAULT_VOICE = "random"
PRESETS = ["ultra_fast", "fast", "standard", "high_quality"]
DEFAULT_PRESET = "fast"
DEFAULT_TEXT = "Hello, world!"
README = """# TorToiSe
Tortoise is a text-to-speech model developed by James Betker. It is capable of zero-shot voice cloning from a small set of voice samples. GitHub repo: [neonbjb/tortoise-tts](https://github.com/neonbjb/tortoise-tts).
## Usage
1. Select a model preset and type the text to speak.
2. Load a voice - either by choosing a preset, uploading audio files, or recording via microphone. Select the option to split audio into chunks if the clips are much longer than 10 seconds each. Follow the guidelines in the [voice customization guide](https://github.com/neonbjb/tortoise-tts#voice-customization-guide).
3. Click **Generate**, and wait - it's called *tortoise* for a reason!
"""
TORTOISE_SR_IN = 22050
TORTOISE_SR_OUT = 24000
def chunk_audio(
t: torch.Tensor, sample_rate: int, chunk_duration_sec: int
) -> List[torch.Tensor]:
duration = t.shape[1] / sample_rate
num_chunks = 1 + int(duration / chunk_duration_sec)
chunks = [
t[
:,
(sample_rate * chunk_duration_sec * i) : (
sample_rate * chunk_duration_sec * (i + 1)
),
]
for i in range(num_chunks)
]
# remove 0-width chunks
chunks = [chunk for chunk in chunks if chunk.shape[1] > 0]
return chunks
def tts_main(voice_samples: List[torch.Tensor], text: str, model_preset: str) -> str:
gen = tts.tts_with_preset(
text,
voice_samples=voice_samples,
conditioning_latents=None,
preset=model_preset,
)
torchaudio.save("generated.wav", gen.squeeze(0).cpu(), TORTOISE_SR_OUT)
return "generated.wav"
def tts_from_preset(voice: str, text, model_preset):
voice_samples, _ = load_voice(voice)
return tts_main(voice_samples, text, model_preset)
def tts_from_files(
files: List[tempfile._TemporaryFileWrapper], do_chunk, text, model_preset
):
voice_samples = [load_audio(f.name, TORTOISE_SR_IN) for f in files]
if do_chunk:
voice_samples = [
chunk for t in voice_samples for chunk in chunk_audio(t, TORTOISE_SR_IN, 10)
]
return tts_main(voice_samples, text, model_preset)
def tts_from_recording(recording: Tuple[int, np.ndarray], do_chunk, text, model_preset):
sample_rate, audio = recording
# normalize- https://github.com/neonbjb/tortoise-tts/blob/main/tortoise/utils/audio.py#L16
norm_fix = 1
if audio.dtype == np.int32:
norm_fix = 2**31
elif audio.dtype == np.int16:
norm_fix = 2**15
audio = torch.FloatTensor(audio.T) / norm_fix
if len(audio.shape) > 1:
# convert to mono
audio = torch.mean(audio, axis=0).unsqueeze(0)
audio = torchaudio.transforms.Resample(sample_rate, TORTOISE_SR_IN)(audio)
if do_chunk:
voice_samples = chunk_audio(audio, TORTOISE_SR_IN, 10)
else:
voice_samples = [audio]
return tts_main(voice_samples, text, model_preset)
def tts_from_url(audio_url, start_time, end_time, do_chunk, text, model_preset):
os.system(
f"yt-dlp -x --audio-format mp3 --force-overwrites {audio_url} -o audio.mp3"
)
audio = load_audio("audio.mp3", TORTOISE_SR_IN)
audio = audio[:, start_time * TORTOISE_SR_IN : end_time * TORTOISE_SR_IN]
if do_chunk:
voice_samples = chunk_audio(audio, TORTOISE_SR_IN, 10)
else:
voice_samples = [audio]
return tts_main(voice_samples, text, model_preset)
with gr.Blocks() as demo:
gr.Markdown(README)
preset = gr.Dropdown(PRESETS, label="Model preset", value=DEFAULT_PRESET)
text = gr.Textbox(label="Text to speak", value=DEFAULT_TEXT)
do_chunk_label = "Split audio into chunks? (for audio much longer than 10 seconds.)"
do_chunk_default = True
with gr.Tab("Choose preset voice"):
inp1 = gr.Dropdown(VOICES, value=DEFAULT_VOICE, label="Preset voice")
btn1 = gr.Button("Generate")
with gr.Tab("Upload audio"):
inp2 = gr.File(file_count="multiple")
do_chunk2 = gr.Checkbox(label=do_chunk_label, value=do_chunk_default)
btn2 = gr.Button("Generate")
with gr.Tab("Record audio"):
inp3 = gr.Audio(source="microphone")
do_chunk3 = gr.Checkbox(label=do_chunk_label, value=do_chunk_default)
btn3 = gr.Button("Generate")
# with gr.Tab("From YouTube"):
# inp4 = gr.Textbox(label="URL")
# do_chunk4 = gr.Checkbox(label=do_chunk_label, value=do_chunk_default)
# start_time = gr.Number(label="Start time (seconds)", precision=0)
# end_time = gr.Number(label="End time (seconds)", precision=0)
# btn4 = gr.Button("Generate")
audio_out = gr.Audio()
btn1.click(
tts_from_preset,
[inp1, text, preset],
[audio_out],
)
btn2.click(
tts_from_files,
[inp2, do_chunk2, text, preset],
[audio_out],
)
btn3.click(
tts_from_recording,
[inp3, do_chunk3, text, preset],
[audio_out],
)
# btn4.click(
# tts_from_url,
# [inp4, start_time, end_time, do_chunk4, text, preset],
# [audio_out],
# )
demo.launch()