File size: 762 Bytes
bdb3001
3a70f25
bdb3001
7609c7d
3a70f25
 
bdb3001
 
297adbe
b687745
3a70f25
 
 
 
 
 
bac6bc3
652e74c
086bde1
bdb3001
297adbe
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import gradio as gr
from faster_whisper import WhisperModel

model_size = "large-v2"

model = WhisperModel(model_size, device="cpu", compute_type="int8")


def transcribe(audio, state=""):
    print(audio)
    segments, info = model.transcribe(audio, beam_size=5)

    print("Detected language '%s' with probability %f" % (info.language, info.language_probability))

    for segment in segments:
        print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
        state += segment.text + " "

    return state, state


gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(source="microphone", type="filepath", streaming=True),
        "state"
    ],
    outputs=[
        "textbox",
        "state"
    ],
    live=True).launch()