Spaces:
Sleeping
Sleeping
Add app and requirements
Browse files- app.py +266 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import json
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
from transformers import AutoTokenizer, RobertaForTokenClassification
|
7 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
8 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
9 |
+
from json import JSONEncoder
|
10 |
+
from faker import Faker
|
11 |
+
|
12 |
+
class out_json():
|
13 |
+
def __init__(self, w,l):
|
14 |
+
self.word = w
|
15 |
+
self.label = l
|
16 |
+
class MyEncoder(JSONEncoder):
|
17 |
+
def default(self, o):
|
18 |
+
return o.__dict__
|
19 |
+
class Model:
|
20 |
+
def __init__(self):
|
21 |
+
self.texto=""
|
22 |
+
self.idioma=""
|
23 |
+
self.modelo_ner=""
|
24 |
+
self.categoria_texto=""
|
25 |
+
|
26 |
+
def identificacion_idioma(self,text):
|
27 |
+
self.texto=text
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained("papluca/xlm-roberta-base-language-detection")
|
29 |
+
model = AutoModelForSequenceClassification.from_pretrained("papluca/xlm-roberta-base-language-detection")
|
30 |
+
|
31 |
+
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
|
32 |
+
|
33 |
+
with torch.no_grad():
|
34 |
+
logits = model(**inputs).logits
|
35 |
+
|
36 |
+
preds = torch.softmax(logits, dim=-1)
|
37 |
+
|
38 |
+
|
39 |
+
id2lang = model.config.id2label
|
40 |
+
vals, idxs = torch.max(preds, dim=1)
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
#retorna el idioma con mayor porcentaje
|
45 |
+
maximo=vals.max()
|
46 |
+
idioma=''
|
47 |
+
porcentaje=0
|
48 |
+
for k, v in zip(idxs, vals):
|
49 |
+
if v.item()==maximo:
|
50 |
+
idioma,porcentaje=id2lang[k.item()],v.item()
|
51 |
+
|
52 |
+
|
53 |
+
if idioma=='es':
|
54 |
+
self.idioma="es"
|
55 |
+
self.modelo_ner='BSC-LT/roberta_model_for_anonimization'
|
56 |
+
self.faker_ = Faker('es_MX')
|
57 |
+
self.model = RobertaForTokenClassification.from_pretrained(self.modelo_ner)
|
58 |
+
else:
|
59 |
+
self.idioma="en"
|
60 |
+
self.faker_ = Faker('en_US')
|
61 |
+
self.modelo_ner="FacebookAI/xlm-roberta-large-finetuned-conll03-english"
|
62 |
+
self.model = AutoModelForTokenClassification.from_pretrained(self.modelo_ner)
|
63 |
+
self.categorizar_texto(self.texto)
|
64 |
+
def reordenacion_tokens(self,tokens):
|
65 |
+
|
66 |
+
i=0
|
67 |
+
new_tokens=[]
|
68 |
+
ig_tokens=[] #ignorar estos indices del array de indentificadores
|
69 |
+
for token in tokens:
|
70 |
+
ind=len(new_tokens)
|
71 |
+
if i<len(tokens):
|
72 |
+
if token.startswith("▁"):
|
73 |
+
|
74 |
+
new_tokens.append(token)
|
75 |
+
|
76 |
+
i=i+1
|
77 |
+
else:
|
78 |
+
new_tokens[ind-1] = (new_tokens[ind-1] + token)
|
79 |
+
ig_tokens.append(i)
|
80 |
+
|
81 |
+
i=i+1
|
82 |
+
return (
|
83 |
+
new_tokens,
|
84 |
+
ig_tokens
|
85 |
+
)
|
86 |
+
|
87 |
+
def reordenacion_identificadores(self,ig_tokens,predicted_tokens_classes):
|
88 |
+
x=0
|
89 |
+
new_identificadores=[]
|
90 |
+
for token in predicted_tokens_classes:
|
91 |
+
|
92 |
+
if x not in ig_tokens:
|
93 |
+
new_identificadores.append(token)
|
94 |
+
x=x+1
|
95 |
+
else:
|
96 |
+
x=x+1
|
97 |
+
return new_identificadores
|
98 |
+
def salida_json(self,tokens,pre_tokens):
|
99 |
+
list=[]
|
100 |
+
i=0
|
101 |
+
for t in tokens:
|
102 |
+
if pre_tokens[i]!='O':
|
103 |
+
a = out_json(t.replace('▁','').replace('Ġ',''),pre_tokens[i].replace('▁',''))
|
104 |
+
list.append(a)
|
105 |
+
i=i+1
|
106 |
+
return MyEncoder().encode(list)
|
107 |
+
def salida_texto( self,tokens,pre_tokens):
|
108 |
+
new_labels = []
|
109 |
+
current_word = None
|
110 |
+
i=0
|
111 |
+
for token in tokens:
|
112 |
+
|
113 |
+
if pre_tokens[i]=='O' or 'MISC' in pre_tokens[i]:
|
114 |
+
new_labels.append(' ' +token.replace('▁',''))
|
115 |
+
else:
|
116 |
+
new_labels.append(' ' + pre_tokens[i])
|
117 |
+
i=i+1
|
118 |
+
a=''
|
119 |
+
for i in new_labels:
|
120 |
+
a = a+i
|
121 |
+
return a
|
122 |
+
#return new_labels
|
123 |
+
def salida_texto_anonimizado(self, ids,pre_tokens):
|
124 |
+
new_labels = []
|
125 |
+
current_word = None
|
126 |
+
i=0
|
127 |
+
for identificador in pre_tokens:
|
128 |
+
|
129 |
+
if identificador=='O' or 'OTH' in identificador:
|
130 |
+
new_labels.append(self.tokenizer.decode(ids[i]))
|
131 |
+
else:
|
132 |
+
new_labels.append(' ' + identificador)
|
133 |
+
i=i+1
|
134 |
+
a=''
|
135 |
+
for i in new_labels:
|
136 |
+
a = a+i
|
137 |
+
return a
|
138 |
+
def formato_salida(self,out):
|
139 |
+
a=""
|
140 |
+
for i in out:
|
141 |
+
a = a + i.replace('▁','').replace(' ','') + ' '
|
142 |
+
return a
|
143 |
+
def fake_pers(self):
|
144 |
+
return self.faker_.name(self)
|
145 |
+
def fake_word(self):
|
146 |
+
return self.faker_.word()
|
147 |
+
def fake_first_name(self):
|
148 |
+
return self.faker_.first_name()
|
149 |
+
def fake_last_name(self):
|
150 |
+
return self.faker_.last_name()
|
151 |
+
def fake_address(self):
|
152 |
+
return self.faker_.address()
|
153 |
+
def fake_sentence(self,n):
|
154 |
+
return self.faker_.sentence(nb_words=n)
|
155 |
+
def fake_text(self):
|
156 |
+
return self.faker_.text()
|
157 |
+
def fake_company(self):
|
158 |
+
return self.faker_.company()
|
159 |
+
def fake_city(self):
|
160 |
+
return self.faker_.city()
|
161 |
+
def reemplazo_fake(self,identificadores):
|
162 |
+
new_iden=[]
|
163 |
+
for id in identificadores:
|
164 |
+
|
165 |
+
if 'PER' in id:
|
166 |
+
new_iden.append(self.fake_first_name())
|
167 |
+
|
168 |
+
elif 'ORG' in id:
|
169 |
+
new_iden.append(self.fake_company())
|
170 |
+
|
171 |
+
elif 'LOC' in id:
|
172 |
+
new_iden.append(self.fake_city())
|
173 |
+
else:
|
174 |
+
new_iden.append(id)
|
175 |
+
return new_iden
|
176 |
+
def categorizar_texto(self,texto):
|
177 |
+
name="elozano/bert-base-cased-news-category"
|
178 |
+
tokenizer = AutoTokenizer.from_pretrained(name)
|
179 |
+
model_ = AutoModelForSequenceClassification.from_pretrained(name)
|
180 |
+
|
181 |
+
inputs_ = tokenizer(texto, padding=True, truncation=True, return_tensors="pt")
|
182 |
+
|
183 |
+
with torch.no_grad():
|
184 |
+
logits = model_(**inputs_).logits
|
185 |
+
|
186 |
+
preds = torch.softmax(logits, dim=-1)
|
187 |
+
|
188 |
+
|
189 |
+
id2lang = model_.config.id2label
|
190 |
+
vals, idxs = torch.max(preds, dim=1)
|
191 |
+
|
192 |
+
#retorna el idioma con mayor porcentaje
|
193 |
+
maximo=vals.max()
|
194 |
+
cat=''
|
195 |
+
self.categoria_texto=''
|
196 |
+
porcentaje=0
|
197 |
+
for k, v in zip(idxs, vals):
|
198 |
+
if v.item()==maximo:
|
199 |
+
cat,porcentaje=id2lang[k.item()],v.item()
|
200 |
+
self.categoria_texto=cat
|
201 |
+
|
202 |
+
|
203 |
+
return cat, porcentaje
|
204 |
+
def predict(self):
|
205 |
+
|
206 |
+
categoria, porcentaje = self.categorizar_texto(self.texto)
|
207 |
+
print(categoria, porcentaje)
|
208 |
+
|
209 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.modelo_ner)
|
210 |
+
tokens = self.tokenizer.tokenize(self.texto)
|
211 |
+
|
212 |
+
ids = self.tokenizer.convert_tokens_to_ids(tokens)
|
213 |
+
|
214 |
+
input_ids = torch.tensor([ids])
|
215 |
+
with torch.no_grad():
|
216 |
+
logits = self.model(input_ids).logits
|
217 |
+
|
218 |
+
predicted_token_class_ids = logits.argmax(-1)
|
219 |
+
|
220 |
+
predicted_tokens_classes = [self.model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
|
221 |
+
|
222 |
+
labels = predicted_token_class_ids
|
223 |
+
loss = self.model(input_ids, labels=labels).loss
|
224 |
+
|
225 |
+
if (self.idioma=='es'):
|
226 |
+
|
227 |
+
|
228 |
+
out1 = self.salida_json(tokens,predicted_tokens_classes) #spanish solo palabras sensibles
|
229 |
+
|
230 |
+
out2 = self.salida_texto_anonimizado(ids,self.reemplazo_fake(predicted_tokens_classes)) #español texto completo
|
231 |
+
|
232 |
+
else:
|
233 |
+
|
234 |
+
new_tokens,ig_tokens=self.reordenacion_tokens(tokens)
|
235 |
+
new_identificadores = self.reordenacion_identificadores(ig_tokens,predicted_tokens_classes)
|
236 |
+
|
237 |
+
out1 = self.salida_json(new_tokens,new_identificadores),
|
238 |
+
|
239 |
+
|
240 |
+
|
241 |
+
out2 = self.salida_texto(new_tokens,self.reemplazo_fake(new_identificadores))
|
242 |
+
|
243 |
+
|
244 |
+
return (
|
245 |
+
|
246 |
+
self.texto,
|
247 |
+
out1,
|
248 |
+
str(out2)
|
249 |
+
|
250 |
+
|
251 |
+
)
|
252 |
+
model = Model()
|
253 |
+
def get_model():
|
254 |
+
return model
|
255 |
+
|
256 |
+
def procesar(texto,archivo):
|
257 |
+
print(texto)
|
258 |
+
print(archivo.name)
|
259 |
+
df=pd.read_csv(archivo.name,delimiter=",")
|
260 |
+
print(df["nombre"])
|
261 |
+
model.identificacion_idioma(texto)
|
262 |
+
|
263 |
+
return model.predict()
|
264 |
+
|
265 |
+
demo = gr.Interface(fn=procesar,inputs=[gr.inputs.Textbox(),gr.inputs.File()] , outputs="text")
|
266 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
Faker
|