dayannex commited on
Commit
3cd711b
·
1 Parent(s): dc19c13

app modified

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -269,16 +269,16 @@ class ModeloDataset:
269
 
270
  self.model = RobertaForTokenClassification.from_pretrained("BSC-LT/roberta_model_for_anonimization")
271
  with torch.no_grad():
272
- logits = model(input_ids).logits
273
  predicted_token_class_ids = logits.argmax(-1)
274
  i=0
275
  _predicted_tokens_classes=[]
276
  for a in predicted_token_class_ids:
277
  #_predicted_tokens_classes[i]=[model.config.id2label[t.item()] for t in predicted_token_class_ids[i]]
278
- _predicted_tokens_classes.append([model.config.id2label[t.item()] for t in predicted_token_class_ids[i]])
279
  i=i+1
280
  labels = predicted_token_class_ids
281
- loss = model(input_ids, labels=labels).loss
282
  #print(round(loss.item(), 2))
283
  else:
284
 
@@ -296,16 +296,16 @@ class ModeloDataset:
296
 
297
  self.model = AutoModelForTokenClassification.from_pretrained("FacebookAI/xlm-roberta-large-finetuned-conll03-english")
298
  with torch.no_grad():
299
- logits = model(input_ids).logits
300
  predicted_token_class_ids = logits.argmax(-1)
301
  i=0
302
  _predicted_tokens_classes=[]
303
  for a in predicted_token_class_ids:
304
  #_predicted_tokens_classes[i]=[model.config.id2label[t.item()] for t in predicted_token_class_ids[i]]
305
- _predicted_tokens_classes.append([model.config.id2label[t.item()] for t in predicted_token_class_ids[i]])
306
  i=i+1
307
  labels = predicted_token_class_ids
308
- loss = model(input_ids, labels=labels).loss
309
  #print(round(loss.item(), 2))
310
  return ids, _predicted_tokens_classes
311
  def salida_texto( self,ids,pre_tokens):
 
269
 
270
  self.model = RobertaForTokenClassification.from_pretrained("BSC-LT/roberta_model_for_anonimization")
271
  with torch.no_grad():
272
+ logits = self.model(input_ids).logits
273
  predicted_token_class_ids = logits.argmax(-1)
274
  i=0
275
  _predicted_tokens_classes=[]
276
  for a in predicted_token_class_ids:
277
  #_predicted_tokens_classes[i]=[model.config.id2label[t.item()] for t in predicted_token_class_ids[i]]
278
+ _predicted_tokens_classes.append([self.model.config.id2label[t.item()] for t in predicted_token_class_ids[i]])
279
  i=i+1
280
  labels = predicted_token_class_ids
281
+ loss = self.model(input_ids, labels=labels).loss
282
  #print(round(loss.item(), 2))
283
  else:
284
 
 
296
 
297
  self.model = AutoModelForTokenClassification.from_pretrained("FacebookAI/xlm-roberta-large-finetuned-conll03-english")
298
  with torch.no_grad():
299
+ logits = self.model(input_ids).logits
300
  predicted_token_class_ids = logits.argmax(-1)
301
  i=0
302
  _predicted_tokens_classes=[]
303
  for a in predicted_token_class_ids:
304
  #_predicted_tokens_classes[i]=[model.config.id2label[t.item()] for t in predicted_token_class_ids[i]]
305
+ _predicted_tokens_classes.append([self.model.config.id2label[t.item()] for t in predicted_token_class_ids[i]])
306
  i=i+1
307
  labels = predicted_token_class_ids
308
+ loss = self.model(input_ids, labels=labels).loss
309
  #print(round(loss.item(), 2))
310
  return ids, _predicted_tokens_classes
311
  def salida_texto( self,ids,pre_tokens):