Spaces:
Sleeping
Sleeping
app modified
Browse files
app.py
CHANGED
@@ -267,7 +267,7 @@ class ModeloDataset:
|
|
267 |
input_ids = torch.tensor(ids)
|
268 |
#model = RobertaForTokenClassification.from_pretrained("BSC-LT/roberta_model_for_anonimization")
|
269 |
|
270 |
-
model =
|
271 |
with torch.no_grad():
|
272 |
logits = model(input_ids).logits
|
273 |
predicted_token_class_ids = logits.argmax(-1)
|
@@ -282,7 +282,7 @@ class ModeloDataset:
|
|
282 |
#print(round(loss.item(), 2))
|
283 |
else:
|
284 |
|
285 |
-
|
286 |
tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-large-finetuned-conll03-english")
|
287 |
tokenized_text=[tokenizer.tokenize(sentence) for sentence in _sentences]
|
288 |
|
@@ -291,7 +291,7 @@ class ModeloDataset:
|
|
291 |
ids=pad_sequences(ids,maxlen=MAX_LEN,dtype="long",truncating="post", padding="post")
|
292 |
input_ids = torch.tensor(ids)
|
293 |
|
294 |
-
|
295 |
model = AutoModelForTokenClassification.from_pretrained("FacebookAI/xlm-roberta-large-finetuned-conll03-english")
|
296 |
with torch.no_grad():
|
297 |
logits = model(input_ids).logits
|
@@ -419,7 +419,7 @@ def procesar(texto,archivo):
|
|
419 |
for item in df.columns.values:
|
420 |
sentences=df[item]
|
421 |
model.identificacion_idioma(sentences[0])
|
422 |
-
ides, predicted = modelo.aplicar_modelo(sentences,
|
423 |
out=modelo.salida_texto2( ides,predicted)
|
424 |
|
425 |
df_new[item] = modelo.unir_array(out)
|
@@ -434,7 +434,7 @@ def procesar(texto,archivo):
|
|
434 |
for item in df.columns.values:
|
435 |
sentences=df[item]
|
436 |
print('item antes de aplicar modelo',item)
|
437 |
-
ides, predicted = modelo.aplicar_modelo(sentences)
|
438 |
print('despues de aplicar modelo')
|
439 |
out=modelo.salida_texto2( ides,predicted)
|
440 |
|
|
|
267 |
input_ids = torch.tensor(ids)
|
268 |
#model = RobertaForTokenClassification.from_pretrained("BSC-LT/roberta_model_for_anonimization")
|
269 |
|
270 |
+
model = RobertaForTokenClassification.from_pretrained("BSC-LT/roberta_model_for_anonimization")
|
271 |
with torch.no_grad():
|
272 |
logits = model(input_ids).logits
|
273 |
predicted_token_class_ids = logits.argmax(-1)
|
|
|
282 |
#print(round(loss.item(), 2))
|
283 |
else:
|
284 |
|
285 |
+
print('idioma:',idioma)
|
286 |
tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-large-finetuned-conll03-english")
|
287 |
tokenized_text=[tokenizer.tokenize(sentence) for sentence in _sentences]
|
288 |
|
|
|
291 |
ids=pad_sequences(ids,maxlen=MAX_LEN,dtype="long",truncating="post", padding="post")
|
292 |
input_ids = torch.tensor(ids)
|
293 |
|
294 |
+
|
295 |
model = AutoModelForTokenClassification.from_pretrained("FacebookAI/xlm-roberta-large-finetuned-conll03-english")
|
296 |
with torch.no_grad():
|
297 |
logits = model(input_ids).logits
|
|
|
419 |
for item in df.columns.values:
|
420 |
sentences=df[item]
|
421 |
model.identificacion_idioma(sentences[0])
|
422 |
+
ides, predicted = modelo.aplicar_modelo(sentences,"en")
|
423 |
out=modelo.salida_texto2( ides,predicted)
|
424 |
|
425 |
df_new[item] = modelo.unir_array(out)
|
|
|
434 |
for item in df.columns.values:
|
435 |
sentences=df[item]
|
436 |
print('item antes de aplicar modelo',item)
|
437 |
+
ides, predicted = modelo.aplicar_modelo(sentences,"en")
|
438 |
print('despues de aplicar modelo')
|
439 |
out=modelo.salida_texto2( ides,predicted)
|
440 |
|