Spaces:
Sleeping
Sleeping
File size: 27,379 Bytes
29cd263 5fa5554 1f5d6fb e19e3ff cc83bd5 1f5d6fb 9829399 94f9674 b04e9c4 1f5d6fb c73b270 1f5d6fb d6e07cc 1f5d6fb 875160b 1f5d6fb 29cd263 df71dac 29cd263 cf49ea6 29cd263 e8fa0f1 1b19fcd e8fa0f1 fd6482c e8fa0f1 fd6482c e8fa0f1 29cd263 e8fa0f1 29cd263 e8fa0f1 29cd263 21fa8e2 c73b270 29cd263 e8fa0f1 c73b270 29cd263 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 |
# gradio final ver ----------------------------
import torch
from torch import nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import gluonnlp as nlp
import numpy as np
from tqdm import tqdm, tqdm_notebook
import pandas as pd
import ast
import os
# Hugging Face๋ฅผ ํตํ ๋ชจ๋ธ ๋ฐ ํ ํฌ๋์ด์ Import
from kobert_tokenizer import KoBERTTokenizer
from transformers import BertModel
from transformers import AdamW
from transformers.optimization import get_cosine_schedule_with_warmup
n_devices = torch.cuda.device_count()
print(n_devices)
for i in range(n_devices):
print(torch.cuda.get_device_name(i))
if torch.cuda.is_available():
device = torch.device("cuda")
print('There are %d GPU(s) available.' % torch.cuda.device_count())
print('We will use the GPU:', torch.cuda.get_device_name(0))
else:
device = torch.device("cpu")
print('No GPU available, using the CPU instead.')
max_len = 64
batch_size = 32
warmup_ratio = 0.1
num_epochs = 5
max_grad_norm = 1
log_interval = 200
learning_rate = 1e-5
class BERTSentenceTransform:
r"""BERT style data transformation.
Parameters
----------
tokenizer : BERTTokenizer.
Tokenizer for the sentences.
max_seq_length : int.
Maximum sequence length of the sentences.
pad : bool, default True
Whether to pad the sentences to maximum length.
pair : bool, default True
Whether to transform sentences or sentence pairs.
"""
# ์
๋ ฅ์ผ๋ก ๋ฐ์ tokenizerm ์ต๋ ์ํ์ค ๊ธธ์ด, vocab, pad ๋ฐ pair ์ค์
def __init__(self, tokenizer, max_seq_length,vocab, pad=True, pair=True):
self._tokenizer = tokenizer
self._max_seq_length = max_seq_length
self._pad = pad
self._pair = pair
self._vocab = vocab
# ์
๋ ฅ๋ ๋ฌธ์ฅ ๋๋ ๋ฌธ์ฅ ์์ BERT ๋ชจ๋ธ์ด ์ฌ์ฉํ ์ ์๋ ํ์์ผ๋ก ๋ณํ
def __call__(self, line):
"""Perform transformation for sequence pairs or single sequences.
The transformation is processed in the following steps:
- tokenize the input sequences
- insert [CLS], [SEP] as necessary
- generate type ids to indicate whether a token belongs to the first
sequence or the second sequence.
- generate valid length
For sequence pairs, the input is a tuple of 2 strings:
text_a, text_b.
Inputs:
text_a: 'is this jacksonville ?'
text_b: 'no it is not'
Tokenization:
text_a: 'is this jack ##son ##ville ?'
text_b: 'no it is not .'
Processed:
tokens: '[CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]'
type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
valid_length: 14
For single sequences, the input is a tuple of single string:
text_a.
Inputs:
text_a: 'the dog is hairy .'
Tokenization:
text_a: 'the dog is hairy .'
Processed:
text_a: '[CLS] the dog is hairy . [SEP]'
type_ids: 0 0 0 0 0 0 0
valid_length: 7
Parameters
----------
line: tuple of str
Input strings. For sequence pairs, the input is a tuple of 2 strings:
(text_a, text_b). For single sequences, the input is a tuple of single
string: (text_a,).
Returns
-------
np.array: input token ids in 'int32', shape (batch_size, seq_length)
np.array: valid length in 'int32', shape (batch_size,)
np.array: input token type ids in 'int32', shape (batch_size, seq_length)
"""
# convert to unicode
text_a = line[0]
if self._pair:
assert len(line) == 2
text_b = line[1]
tokens_a = self._tokenizer.tokenize(text_a)
tokens_b = None
if self._pair:
tokens_b = self._tokenizer(text_b)
if tokens_b:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
self._truncate_seq_pair(tokens_a, tokens_b,
self._max_seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > self._max_seq_length - 2:
tokens_a = tokens_a[0:(self._max_seq_length - 2)]
# The embedding vectors for `type=0` and `type=1` were learned during
# pre-training and are added to the wordpiece embedding vector
# (and position vector). This is not *strictly* necessary since
# the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
#vocab = self._tokenizer.vocab
vocab = self._vocab
tokens = []
tokens.append(vocab.cls_token)
tokens.extend(tokens_a)
tokens.append(vocab.sep_token)
segment_ids = [0] * len(tokens)
if tokens_b:
tokens.extend(tokens_b)
tokens.append(vocab.sep_token)
segment_ids.extend([1] * (len(tokens) - len(segment_ids)))
input_ids = self._tokenizer.convert_tokens_to_ids(tokens)
# The valid length of sentences. Only real tokens are attended to.
valid_length = len(input_ids)
if self._pad:
# Zero-pad up to the sequence length.
padding_length = self._max_seq_length - valid_length
# use padding tokens for the rest
input_ids.extend([vocab[vocab.padding_token]] * padding_length)
segment_ids.extend([0] * padding_length)
return np.array(input_ids, dtype='int32'), np.array(valid_length, dtype='int32'),\
np.array(segment_ids, dtype='int32')
class BERTDataset(Dataset):
def __init__(self, dataset, sent_idx, label_idx, bert_tokenizer, vocab, max_len,
pad, pair):
transform = BERTSentenceTransform(bert_tokenizer, max_seq_length=max_len,vocab=vocab, pad=pad, pair=pair)
#transform = nlp.data.BERTSentenceTransform(
# tokenizer, max_seq_length=max_len, pad=pad, pair=pair)
self.sentences = [transform([i[sent_idx]]) for i in dataset]
self.labels = [np.int32(i[label_idx]) for i in dataset]
def __getitem__(self, i):
return (self.sentences[i] + (self.labels[i], ))
def __len__(self):
return (len(self.labels))
tokenizer = KoBERTTokenizer.from_pretrained('skt/kobert-base-v1')
bertmodel = BertModel.from_pretrained('skt/kobert-base-v1', return_dict=False)
vocab = nlp.vocab.BERTVocab.from_sentencepiece(tokenizer.vocab_file, padding_token='[PAD]')
# Kobert_softmax
class BERTClassifier(nn.Module):
def __init__(self,
bert,
hidden_size=768,
num_classes=6,
dr_rate=None,
params=None):
super(BERTClassifier, self).__init__()
self.bert = bert
self.dr_rate = dr_rate
self.softmax = nn.Softmax(dim=1) # Softmax๋ก ๋ณ๊ฒฝ
self.classifier = nn.Sequential(
nn.Dropout(p=0.5),
nn.Linear(in_features=hidden_size, out_features=512),
nn.Linear(in_features=512, out_features=num_classes),
)
# ์ ๊ทํ ๋ ์ด์ด ์ถ๊ฐ (Layer Normalization)
self.layer_norm = nn.LayerNorm(768)
# ๋๋กญ์์
self.dropout = nn.Dropout(p=dr_rate)
def gen_attention_mask(self, token_ids, valid_length):
attention_mask = torch.zeros_like(token_ids)
for i, v in enumerate(valid_length):
attention_mask[i][:v] = 1
return attention_mask.float()
def forward(self, token_ids, valid_length, segment_ids):
attention_mask = self.gen_attention_mask(token_ids, valid_length)
_, pooler = self.bert(input_ids=token_ids, token_type_ids=segment_ids.long(), attention_mask=attention_mask.float().to(token_ids.device))
pooled_output = self.dropout(pooler)
normalized_output = self.layer_norm(pooled_output)
out = self.classifier(normalized_output)
# LayerNorm ์ ์ฉ
pooler = self.layer_norm(pooler)
if self.dr_rate:
pooler = self.dropout(pooler)
logits = self.classifier(pooler) # ๋ถ๋ฅ๋ฅผ ์ํ ๋ก์ง ๊ฐ ๊ณ์ฐ
probabilities = self.softmax(logits) # Softmax๋ก ๊ฐ ํด๋์ค์ ํ๋ฅ ๊ณ์ฐ
return probabilities # ๊ฐ ํด๋์ค์ ๋ํ ํ๋ฅ ๋ฐํ
model = torch.load('./model_weights_softmax(model).pth', map_location=torch.device('cpu'))
model.eval()
# ๋ฉ๋ก ๋ฐ์ดํฐ ๋ถ๋ฌ์ค๊ธฐ
melon_data = pd.read_csv('./melon_data.csv')
melon_emotions = pd.read_csv('./melon_emotions_final.csv')
melon_emotions = pd.merge(melon_emotions, melon_data, left_on='Title', right_on='title', how='inner')
melon_emotions = melon_emotions[['singer', 'Title', 'genre','Emotions']]
melon_emotions = melon_emotions.drop_duplicates(subset='Title', keep='first')
melon_emotions['Emotions'] = melon_emotions['Emotions'].apply(lambda x: ast.literal_eval(x))
emotions = melon_emotions['Emotions'].to_list()
#gradio
import numpy as np
import pandas as pd
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, AutoModelForZeroShotImageClassification, pipeline
import gradio as gr
import openai
from sklearn.metrics.pairwise import cosine_similarity
import ast
###### ๊ธฐ๋ณธ ์ค์ ######
# OpenAI API ํค ์ค์
api_key = os.getenv("OPEN_AI_KEY")
openai.api_key = api_key
if openai.api_key:
print("Private Key:", openai.api_key)
else:
print("Private Key not set.")
# ๋ชจ๋ธ ๋ฐ ํ๋ก์ธ์ ๋ก๋
processor = AutoProcessor.from_pretrained("openai/clip-vit-large-patch14")
model_clip = AutoModelForZeroShotImageClassification.from_pretrained("openai/clip-vit-large-patch14")
tokenizer = KoBERTTokenizer.from_pretrained('skt/kobert-base-v1')
# ์์ธก ๋ ์ด๋ธ
labels = ['a photo of a happy face', 'a photo of a joyful face', 'a photo of a loving face',
'a photo of an angry face', 'a photo of a melancholic face', 'a photo of a lonely face']
###### ์ผ๊ตด ๊ฐ์ ๋ฒกํฐ ์์ธก ํจ์ ######
def predict_face_emotion(image):
# ์ด๋ฏธ์ง๊ฐ None์ด๊ฑฐ๋ ์๋ชป๋ ๊ฒฝ์ฐ
if image is None:
return np.zeros(len(labels)) # ๋น ๋ฒกํฐ ๋ฐํ
# PIL ์ด๋ฏธ์ง๋ฅผ RGB๋ก ๋ณํ
image = image.convert("RGB")
# CLIP ๋ชจ๋ธ์ processor๋ฅผ ์ด์ฉํ ์ ์ฒ๋ฆฌ
inputs = processor(text=labels, images=image, return_tensors="pt", padding=True)
# pixel_values๊ฐ 4์ฐจ์์ธ์ง ํ์ธ ํ ๊ฐ์ ๋ณํ
pixel_values = inputs["pixel_values"] # (batch_size, channels, height, width)
# CLIP ๋ชจ๋ธ ์์ธก: forward์ ์ฌ๋ฐ๋ฅธ ์
๋ ฅ ์ ๋ฌ
with torch.no_grad():
outputs = model_clip(pixel_values=pixel_values, input_ids=inputs["input_ids"])
# ํ๋ฅ ๊ฐ ๊ณ์ฐ
probs = outputs.logits_per_image.softmax(dim=1)[0]
return probs.numpy()
###### ํ
์คํธ ๊ฐ์ ๋ฒกํฐ ์์ธก ํจ์ ######
sentence_emotions = []
def predict_text_emotion(predict_sentence):
if not isinstance(predict_sentence, str):
predict_sentence = str(predict_sentence)
data = [predict_sentence, '0']
dataset_another = [data]
another_test = BERTDataset(dataset_another, 0, 1, tokenizer, vocab, max_len, True, False)
test_dataloader = torch.utils.data.DataLoader(another_test, batch_size=1, num_workers=5)
model.eval()
for batch_id, (token_ids, valid_length, segment_ids, label) in enumerate(test_dataloader):
token_ids = token_ids.long().to(device)
segment_ids = segment_ids.long().to(device)
out = model(token_ids, valid_length, segment_ids)
for i in out:
logits = i.detach().cpu().numpy()
emotions = [value.item() for value in i]
sentence_emotions.append(emotions)
return sentence_emotions[0] # ์ต์ข
๋ฆฌ์คํธ ๋ฐํ
###### ์ต์ข
๊ฐ์ ๋ฒกํฐ ๊ณ์ฐ ######
def generate_final_emotion_vector(diary_input, image_input):
# ํ
์คํธ ๊ฐ์ ๋ฒกํฐ ์์ธก
text_vector = predict_text_emotion(diary_input)
# ์ผ๊ตด ๊ฐ์ ๋ฒกํฐ ์์ธก
image_vector = predict_face_emotion(image_input)
text_vector = np.array(text_vector, dtype=float)
image_vector = np.array(image_vector, dtype=float)
print(text_vector)
print(image_vector)
# ์ต์ข
๊ฐ์ ๋ฒกํฐ ๊ฐ์ค์น ์ ์ฉ
return (text_vector * 0.7) + (image_vector * 0.3)
####### ์ฝ์ฌ์ธ ์ ์ฌ๋ ํจ์ ######
def cosine_similarity_fn(vec1, vec2):
dot_product = np.dot(vec1, vec2)
norm_vec1 = np.linalg.norm(vec1)
norm_vec2 = np.linalg.norm(vec2)
if norm_vec1 == 0 or norm_vec2 == 0:
return np.nan # ์ ๋ก ๋ฒกํฐ์ธ ๊ฒฝ์ฐ NaN ๋ฐํ
return dot_product / (norm_vec1 * norm_vec2)
####### ์ด๋ฏธ์ง ๋ค์ด๋ก๋ ํจ์ (PIL ๊ฐ์ฒด ๋ฐํ) ######
def download_image(image_url):
try:
response = requests.get(image_url)
response.raise_for_status()
return Image.open(requests.get(image_url, stream=True).raw)
except Exception as e:
print(f"์ด๋ฏธ์ง ๋ค์ด๋ก๋ ์ค๋ฅ: {e}")
return None
# ์คํ์ผ ์ต์
options = {
1: "๐ผ ์น๊ทผํ",
2: "๐ฅ ํธ๋ ๋ํ MZ์ธ๋",
3: "๐ ์ ๋จธ๋ฌ์คํ ์ฅ๋๊พธ๋ฌ๊ธฐ",
4: "๐ง ์ฐจ๋ถํ ๋ช
์๊ฐ",
5: "๐จ ์ฐฝ์์ ์ธ ์์ ๊ฐ",
}
# ์ผ๊ธฐ ๋ถ์ ํจ์
def chatbot_diary_with_image(style_option, diary_input, image_input, playlist_input):
style = options.get(int(style_option.split('.')[0]), "๐ผ ์น๊ทผํ")
# GPT ์๋ต (์ผ๊ธฐ ์ฝ๋ฉํธ)
try:
response_comment = openai.ChatCompletion.create(
model="gpt-4-turbo",
messages=[{"role": "system", "content": f"๋๋ {style} ์ฑ๋ด์ด์ผ."}, {"role": "user", "content": diary_input}],
)
comment = response_comment.choices[0].message.content
except Exception as e:
comment = f"๐ฌ ์ค๋ฅ: {e}"
# GPT ๊ธฐ๋ฐ ์ผ๊ธฐ ์ฃผ์ ์ถ์ฒ
try:
topics = get_initial_response(style_option, diary_input)
except Exception as e:
topics = f"๐ ์ฃผ์ ์ถ์ฒ ์ค๋ฅ: {e}"
# DALLยทE 3 ์ด๋ฏธ์ง ์์ฑ ์์ฒญ (3D ์คํ์ผ ์บ๋ฆญํฐ)
try:
response = openai.Image.create(
model="dall-e-3",
prompt=(
f"{diary_input}๋ฅผ ๋ฐ์ํด์ ๊ฐ์ ์ ํํํ๋ 3D ์คํ์ผ์ ์ผ๋ฌ์คํธ ์บ๋ฆญํฐ๋ฅผ ๊ทธ๋ ค์ค. "
"์บ๋ฆญํฐ๋ ๋ถ๋๋ฝ๊ณ ๋ฅ๊ทผ ๋์์ธ์ ํ์ ์ด ๊ฐ์ ์ ์ ๋๋ฌ๋ด์ผ ํด. "
"๊ฐ์ ์ ์๊ฐ์ ์ผ๋ก ํํํ ์ ์๋ ์ํ์ด๋ ์์ ์์ง์ ํฌํจํด์ค. "
"๊ฐ์ ์ ๋ถ์๊ธฐ๋ฅผ ๋ฐ์ํ๋ ์ ๋ช
ํ๊ณ ๊นจ๋ํ ์์์ ์ฌ์ฉํ๊ณ , ์บ๋ฆญํฐ๊ฐ ์ญ๋์ ์ด๊ณ ์ฌ๋ฏธ์๋ ์์ธ๋ฅผ ์ทจํ ์ ์๋๋ก ํด์ค. "
"์ด๋ฏธ์ง์๋ ํ๋์ ์บ๋ฆญํฐ๋ง ๋์ค๊ฒ ํด์ค."
"๋ฐฐ๊ฒฝ์ ๋จ์ํ๊ณ ๋ฐ์ ์์์ผ๋ก ์ค์ ํด์ ์บ๋ฆญํฐ๊ฐ ๊ฐ์กฐ๋ ์ ์๋๋ก ํด์ค."
),
size="1024x1024",
n=1
)
# URL ๊ฐ์ ธ์ค๊ธฐ ๋ฐ ๋ค์ด๋ก๋
image_url = response['data'][0]['url']
print(f"Generated Image URL: {image_url}") # URL ํ์ธ
image = download_image(image_url)
except Exception as e:
print(f"์ด๋ฏธ์ง ์์ฑ ์ค๋ฅ: {e}") # ์ค๋ฅ ์์ธ ์ถ๋ ฅ
image = None
# ์ฌ์ฉ์ ์ต์ข
๊ฐ์ ๋ฒกํฐ
final_user_emotions = generate_final_emotion_vector(diary_input,image_input)
# ๊ฐ ๋
ธ๋์ ๋ํ ์ฝ์ฌ์ธ ์ ์ฌ๋ ๊ณ์ฐ
similarities = [cosine_similarity_fn(final_user_emotions, song_vec) for song_vec in emotions]
#์ ํจํ ์ ์ฌ๋ ํํฐ๋ง
valid_indices = [i for i, sim in enumerate(similarities) if not np.isnan(sim)]
filtered_similarities = [similarities[i] for i in valid_indices]
recommendations = np.argsort(filtered_similarities)[::-1] # ๋์ ์ ์ฌ๋ ์์ผ๋ก ์ ๋ ฌ
results_df = pd.DataFrame({
'Singer' : melon_emotions['singer'].iloc[recommendations].values,
'title' : melon_emotions['Title'].iloc[recommendations].values,
'genre' : melon_emotions['genre'].iloc[recommendations].values,
'Cosine Similarity': [similarities[idx] for idx in recommendations]
})
# ๊ฐ์ค์น ๊ฐ ์ค์
gamma = 0.3
similar_playlists = results_df.head(5)
similar_playlists = pd.merge(similar_playlists, melon_emotions, left_on="title", right_on="Title", how="inner")
similar_playlists = similar_playlists[["title", "Emotions", "singer"]]
dissimilar_playlists = results_df.tail(5)
dissimilar_playlists = pd.merge(dissimilar_playlists, melon_emotions, left_on="title", right_on="Title", how="inner")
dissimilar_playlists = dissimilar_playlists[["title", "Emotions", "singer"]]
#๊ฐ์ ๊ณผ ์ ์ฌํ ํ๋ ์ด๋ฆฌ์คํธ
if playlist_input == '๋น์ทํ':
results = []
seen_songs = set(similar_playlists["title"].values) # ์ด๊ธฐ seen_songs์ similar_playlists์ ๊ณก๋ค์ ์ถ๊ฐ
# ์ฌ์ฉ์ ๊ฐ์ ๋ฒกํฐ
user_emotion_vector = generate_final_emotion_vector(diary_input, image_input).reshape(1, -1)
for index, row in similar_playlists.iterrows():
song_title = row["title"]
song_singer = row["singer"]
song_vector = np.array(row["Emotions"]).reshape(1, -1)
song_results = []
for i, emotion_vec in enumerate(emotions):
emotion_title = melon_emotions.iloc[i]["Title"]
emotion_singer = melon_emotions.iloc[i]["singer"]
emotion_vec = np.array(emotion_vec).reshape(1, -1)
# similar_playlists์ ์๋ ๊ณก๊ณผ seen_songs์ ์๋ ๊ณก์ ์ ์ธ
if (
emotion_title != song_title and
emotion_title not in seen_songs
):
try:
# ๊ณก ๊ฐ ์ ์ฌ๋(Song-Song Similarity)
song_song_similarity = cosine_similarity(song_vector, emotion_vec)[0][0]
# ์ฌ์ฉ์ ๊ฐ์ ๋ฒกํฐ์์ ์ ์ฌ๋(User-Song Similarity)
user_song_similarity = cosine_similarity(user_emotion_vector, emotion_vec)[0][0]
# Final Score ๊ณ์ฐ
final_score = gamma * song_song_similarity + (1 - gamma) * user_song_similarity
song_results.append({
"Title": emotion_title,
"Singer": emotion_singer,
"Song-Song Similarity": song_song_similarity,
"User-Song Similarity": user_song_similarity,
"Final Score": final_score
})
except ValueError as e:
print(f"Error with {song_title} vs {emotion_title}: {e}")
continue
# Final Score๋ฅผ ๊ธฐ์ค์ผ๋ก ์์ 3๊ณก ์ ํ
song_results = sorted(song_results, key=lambda x: x["Final Score"], reverse=True)[:3]
seen_songs.update([entry["Title"] for entry in song_results])
results.append({"Song Title": song_title, "Singer": song_singer, "Top 3 Similarities": song_results})
# ๊ฒฐ๊ณผ ์ถ๋ ฅ
for result in results:
print(f"{result['Singer']} - {result['Song Title']}")
for entry in result["Top 3 Similarities"]:
print(f"{entry['Singer']} - {entry['Title']} : Final Score {entry['Final Score']:.4f}")
print(f" (Song-Song Similarity: {entry['Song-Song Similarity']:.4f}, User-Song Similarity: {entry['User-Song Similarity']:.4f})")
print("-" * 30)
#๋ฐ๋ ํ๋ ์ด๋ฆฌ์คํธ
if playlist_input == '์๋ฐ๋':
results = []
seen_songs = set()
# ์ฌ์ฉ์ ๊ฐ์ ๋ฒกํฐ
user_emotion_vector = generate_final_emotion_vector(diary_input, image_input).reshape(1, -1)
for index, row in dissimilar_playlists.iterrows():
song_title = row["title"]
song_singer = row["singer"]
song_vector = np.array(row["Emotions"]).reshape(1, -1)
song_results = []
for i, emotion_vec in enumerate(emotions):
emotion_title = melon_emotions.iloc[i]["Title"]
emotion_singer = melon_emotions.iloc[i]["singer"]
emotion_vec = np.array(emotion_vec).reshape(1, -1)
if (
emotion_title != song_title and
emotion_title not in dissimilar_playlists["title"].values and
emotion_title not in seen_songs
):
try:
# ๊ณก ๊ฐ ์ ์ฌ๋(Song-Song Similarity)
song_song_similarity = cosine_similarity(song_vector, emotion_vec)[0][0]
# ์ฌ์ฉ์ ๊ฐ์ ๋ฒกํฐ์์ ๋ฐ๋ ์ ์ฌ๋(User-Song Dissimilarity)
opposite_user_song_similarity = 1 - cosine_similarity(user_emotion_vector, emotion_vec)[0][0]
# Final Score ๊ณ์ฐ
final_score = gamma * song_song_similarity + (1 - gamma) * opposite_user_song_similarity
song_results.append({
"Title": emotion_title,
"Singer": emotion_singer,
"Song-Song Similarity": song_song_similarity,
"User-Song Dissimilarity": opposite_user_song_similarity,
"Final Score": final_score
})
except ValueError as e:
print(f"Error with {song_title} vs {emotion_title}: {e}")
continue
# Final Score๋ฅผ ๊ธฐ์ค์ผ๋ก ์์ 3๊ณก ์ ํ (๊ฐ์ด ํฐ ๊ณก์ด ๋ฐ๋๋๋ ๊ณก)
song_results = sorted(song_results, key=lambda x: x["Final Score"], reverse=True)[:3]
seen_songs.update(entry["Title"] for entry in song_results)
results.append({"Song Title": song_title, "Singer": song_singer, "Top 3 Similarities": song_results})
# ๊ฒฐ๊ณผ ์ถ๋ ฅ
for result in results:
print(f"{result['Singer']} - {result['Song Title']}")
for entry in result["Top 3 Similarities"]:
print(f"{entry['Singer']} - {entry['Title']} : Final Score {entry['Final Score']:.4f}")
print(f' (Song-Song Similarity: {entry["Song-Song Similarity"]:.4f}, User-Song Dissimilarity: {entry["User-Song Dissimilarity"]:.4f})')
print("-" * 30)
# ๋ฐ์ดํฐํ๋ ์ ๋ณํ์ ์ํ ๋ฆฌ์คํธ ์์ฑ
df_rows = []
for result in results:
song_title = result['Song Title']
song_singer = result['Singer']
main_song_info = f"{song_singer} - {song_title}"
for entry in result["Top 3 Similarities"]:
combined_info = f"{entry['Singer']} - {entry['Title']}"
df_rows.append({"1st ์ถ์ฒ ํ๋ ์ด๋ฆฌ์คํธ": main_song_info, "2nd ์ถ์ฒ ํ๋ ์ด๋ฆฌ์คํธ": combined_info})
# ๋ฐ์ดํฐํ๋ ์ ์์ฑ
final_music_playlist_recommendation = pd.DataFrame(df_rows)
# ๊ณก ์ ๋ชฉ ๊ทธ๋ฃนํํ์ฌ ์ฒซ ๋ฒ์งธ ํ์๋ง ๊ณก ์ ๋ชฉ ํ์
final_music_playlist_recommendation["1st ์ถ์ฒ ํ๋ ์ด๋ฆฌ์คํธ"] = final_music_playlist_recommendation.groupby("1st ์ถ์ฒ ํ๋ ์ด๋ฆฌ์คํธ")["1st ์ถ์ฒ ํ๋ ์ด๋ฆฌ์คํธ"].transform(
lambda x: [x.iloc[0]] + [""] * (len(x) - 1)
)
return final_music_playlist_recommendation, comment, topics, image
# ์ผ๊ธฐ ์ฃผ์ ์ถ์ฒ ํจ์
def get_initial_response(style, sentence):
style = options.get(int(style.split('.')[0]), "๐ผ ์น๊ทผํ")
system_prompt_momentum = (
f"๋๋ {style}์ ์ฑ๋ด์ด์ผ. ์ฌ์ฉ์๊ฐ ์์ฑํ ์ผ๊ธฐ๋ฅผ ๋ฐํ์ผ๋ก ์๊ฐ์ ์ ๋ฆฌํ๊ณ ๋ด๋ฉด์ ๋์๋ณผ ์ ์๋๋ก "
"๋์์ฃผ๋ ๊ตฌ์ฒด์ ์ธ ์ผ๊ธฐ ์ฝํ
์ธ ๋ ์ง๋ฌธ 4-5๊ฐ๋ฅผ ์ถ์ฒํด์ค."
)
try:
response = openai.ChatCompletion.create(
model="gpt-4-turbo",
messages=[
{"role": "system", "content": system_prompt_momentum},
{"role": "user", "content": sentence}
],
temperature=1
)
return response.choices[0].message.content
except Exception as e:
return f"๐ ์ฃผ์ ์ถ์ฒ ์ค๋ฅ: {e}"
# Gradio ์ธํฐํ์ด์ค
with gr.Blocks() as app:
gr.Markdown("""
# ๐ EmoDiary : ์ค๋งํธ ๊ฐ์ ์ผ๊ธฐ ๋์ฐ๋ฏธ ๐
**์ค๋์ ํ๋ฃจ๋ฅผ ๊ธฐ๋กํ๋ฉด, ๊ทธ์ ๋ง๋ ํ๋ ์ด๋ฆฌ์คํธ์ ์ผ๊ธฐ ํ๊ณ ์ฝํ
์ธ ๋ฅผ ์๋์ผ๋ก ์์ฑํด๋๋ฆฝ๋๋ค!**
### ์ฌ์ฉ ๋ฐฉ๋ฒ:
1. ์ค๋์ ํ๋ฃจ ๊ธฐ๋กํ๊ธฐ: ํ๋ฃจ ๋์์ ๊ฐ์ ์ด๋ ์ผ์ด๋ ์ผ์ ํ
์คํธ ๋ฐ์ค์ ๊ธฐ๋กํ๊ณ , ์์ ์ ๊ฐ์ ์ ๋ฐ์ํ ์ ์๋ ์ผ๊ตด ํ์ ์ด๋ฏธ์ง๋ฅผ ์ดฌ์ํด์ฃผ์ธ์.
2. AI ์คํ์ผ ์ ํํ๊ธฐ: ์์ ์ ์ ํธ์ ๋ง๋ ์คํ์ผ์ ์ ํํ๋ฉด, ํด๋น ์คํ์ผ์ ๋ง์ถ ๋ต์ฅ๊ณผ ํ๊ณ ์ฃผ์ ๋ฅผ ์ถ์ฒํด๋๋ฆด๊ฒ์.
3. ํ๋ ์ด๋ฆฌ์คํธ ์ ํํ๊ธฐ: ์ค๋์ ๊ฐ์ ์ ๋ง์ถฐ "๋น์ทํ" ๋๋ "์๋ฐ๋" ๊ฐ์ ์ ์ ํํ๋ฉด, ๊ทธ์ ๋ง๋ ํ๋ ์ด๋ฆฌ์คํธ๋ฅผ ์ถ์ฒํด๋๋ฆด๊ฒ์.
4. ๋ถ์ ์์: "๐ ๋ถ์ ์์" ๋ฒํผ์ ํด๋ฆญํ๋ฉด, ์
๋ ฅํ ์ ๋ณด์ ์ด๋ฏธ์ง๋ฅผ ๋ฐํ์ผ๋ก ์ถ์ฒ ํ๋ ์ด๋ฆฌ์คํธ, ๊ฐ์ ์บ๋ฆญํฐ ์ด๋ฏธ์ง, ๊ทธ๋ฆฌ๊ณ ํ๊ณ ์ฃผ์ ๊ฐ ์์ฑ๋ฉ๋๋ค.""")
with gr.Row():
with gr.Column():
diary_input = gr.Textbox(label="๐ ์ค๋ ํ๋ฃจ ๊ธฐ๋กํ๊ธฐ", placeholder="ex)์ค๋ ์ํ๊ฐ์ ๋ง์๋ ๊ฑธ ๋ง์ด ๋จน์ด์ ์์ฒญ ์ ๋ฌ์ด")
chatbot_style = gr.Radio(
choices=[f"{k}. {v}" for k, v in options.items()],
label="๐ค ์ด๋ค ์คํ์ผ์ AI์๊ฒ ๋ต์ฅ๊ณผ ํ๊ณ ์ฃผ์ ๋ฅผ ์ถ์ฒ๋ฐ๊ณ ์ถ๋์?"
)
playlist_input = gr.Radio(["๋น์ทํ", "์๋ฐ๋"], label="๐ง ์ค๋์ ๊ฐ์ ๊ณผ ใ
ใ
๋๋ ํ๋ ์ด๋ฆฌ์คํธ๋ฅผ ์ถ์ฒ๋ฐ๊ณ ์ถ๋์?")
image_input = gr.Image(type="pil", label="๐ท ์ผ๊ตด ํ์ ์ฌ์ง ์
๋ก๋", width=256, height=256)
submit_btn = gr.Button("๐ ๋ถ์ ์์")
with gr.Column():
output_playlist = gr.Dataframe(label="๐ง ์ถ์ฒ ํ๋ ์ด๋ฆฌ์คํธ ")
output_comment = gr.Textbox(label="๐ฌ AI ์ฝ๋ฉํธ")
output_topics = gr.Textbox(label="๐ ์ค๋์ ๋ด๋ฉด์ ๋์๋ณด๋ ํ๊ณ ์ถ์ฒ ์ฃผ์ ")
output_image = gr.Image(label="๐ผ๏ธ ์์ฑ๋ ์ค๋์ ๊ฐ์ ์บ๋ฆญํฐ", type="pil", width=256, height=256)
# ๋ฒํผ ํด๋ฆญ ์ด๋ฒคํธ ์ฐ๊ฒฐ
submit_btn.click(
fn=chatbot_diary_with_image,
inputs=[chatbot_style, diary_input, image_input, playlist_input],
outputs=[output_playlist, output_comment, output_topics, output_image]
)
# ์ฑ ์คํ
app.launch(debug=True) |