Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -80,26 +80,6 @@ class BERTClassifier(nn.Module):
|
|
80 |
probabilities = self.softmax(logits) # Softmax๋ก ๊ฐ ํด๋์ค์ ํ๋ฅ ๊ณ์ฐ
|
81 |
return probabilities # ๊ฐ ํด๋์ค์ ๋ํ ํ๋ฅ ๋ฐํ
|
82 |
|
83 |
-
#์ ์ํ ๋ชจ๋ธ ๋ถ๋ฌ์ค๊ธฐ
|
84 |
-
model = BERTClassifier(bertmodel,dr_rate=0.4).to(device)
|
85 |
-
#model = BERTClassifier(bertmodel, dr_rate=0.5).to('cpu')
|
86 |
-
|
87 |
-
# Prepare optimizer and schedule (linear warmup and decay)
|
88 |
-
no_decay = ['bias', 'LayerNorm.weight']
|
89 |
-
optimizer_grouped_parameters = [
|
90 |
-
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
|
91 |
-
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
|
92 |
-
]
|
93 |
-
optimizer = AdamW(optimizer_grouped_parameters, lr=learning_rate)
|
94 |
-
loss_fn = nn.CrossEntropyLoss()
|
95 |
-
t_total = len(train_dataloader) * num_epochs
|
96 |
-
warmup_step = int(t_total * warmup_ratio)
|
97 |
-
scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=warmup_step, num_training_steps=t_total)
|
98 |
-
def calc_accuracy(X,Y):
|
99 |
-
max_vals, max_indices = torch.max(X, 1)
|
100 |
-
train_acc = (max_indices == Y).sum().data.cpu().numpy()/max_indices.size()[0]
|
101 |
-
return train_acc
|
102 |
-
train_dataloader
|
103 |
|
104 |
model = torch.load('./model_weights_softmax(model).pth')
|
105 |
model.eval()
|
|
|
80 |
probabilities = self.softmax(logits) # Softmax๋ก ๊ฐ ํด๋์ค์ ํ๋ฅ ๊ณ์ฐ
|
81 |
return probabilities # ๊ฐ ํด๋์ค์ ๋ํ ํ๋ฅ ๋ฐํ
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
model = torch.load('./model_weights_softmax(model).pth')
|
85 |
model.eval()
|