Spaces:
Runtime error
Runtime error
khulnasoft
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,78 +1,105 @@
|
|
1 |
import os
|
2 |
from threading import Thread
|
3 |
-
from typing import Iterator
|
4 |
|
5 |
import gradio as gr
|
6 |
-
import spaces
|
7 |
import torch
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
9 |
|
|
|
10 |
MAX_MAX_NEW_TOKENS = 2048
|
11 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
12 |
-
|
13 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
14 |
|
15 |
DESCRIPTION = """\
|
16 |
# DeepCode-6.7B-Chat
|
17 |
-
|
18 |
-
|
19 |
"""
|
20 |
|
21 |
if not torch.cuda.is_available():
|
22 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
23 |
-
|
24 |
-
|
25 |
-
if torch.cuda.is_available():
|
26 |
model_id = "deepcode-ai/deepcode-ai-6.7b-instruct"
|
27 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
28 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
29 |
tokenizer.use_default_system_prompt = False
|
30 |
-
|
31 |
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def generate(
|
35 |
message: str,
|
36 |
-
chat_history:
|
37 |
system_prompt: str,
|
38 |
-
max_new_tokens: int =
|
39 |
temperature: float = 0.6,
|
40 |
top_p: float = 0.9,
|
41 |
top_k: int = 50,
|
42 |
-
repetition_penalty: float = 1,
|
43 |
) -> Iterator[str]:
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
for user, assistant in chat_history:
|
48 |
-
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
49 |
-
conversation.append({"role": "user", "content": message})
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
input_ids = input_ids.to(model.device)
|
56 |
|
57 |
-
streamer = TextIteratorStreamer(
|
|
|
|
|
58 |
generate_kwargs = dict(
|
59 |
-
|
60 |
streamer=streamer,
|
61 |
max_new_tokens=max_new_tokens,
|
62 |
do_sample=False,
|
63 |
num_beams=1,
|
64 |
repetition_penalty=repetition_penalty,
|
65 |
-
eos_token_id=tokenizer.eos_token_id
|
66 |
)
|
67 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
68 |
t.start()
|
69 |
|
70 |
outputs = []
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
74 |
|
75 |
|
|
|
76 |
chat_interface = gr.ChatInterface(
|
77 |
fn=generate,
|
78 |
additional_inputs=[
|
@@ -84,13 +111,6 @@ chat_interface = gr.ChatInterface(
|
|
84 |
step=1,
|
85 |
value=DEFAULT_MAX_NEW_TOKENS,
|
86 |
),
|
87 |
-
# gr.Slider(
|
88 |
-
# label="Temperature",
|
89 |
-
# minimum=0,
|
90 |
-
# maximum=4.0,
|
91 |
-
# step=0.1,
|
92 |
-
# value=0,
|
93 |
-
# ),
|
94 |
gr.Slider(
|
95 |
label="Top-p (nucleus sampling)",
|
96 |
minimum=0.05,
|
@@ -110,14 +130,13 @@ chat_interface = gr.ChatInterface(
|
|
110 |
minimum=1.0,
|
111 |
maximum=2.0,
|
112 |
step=0.05,
|
113 |
-
value=1,
|
114 |
),
|
115 |
],
|
116 |
-
stop_btn=None,
|
117 |
examples=[
|
118 |
-
["
|
119 |
-
["Can you explain
|
120 |
-
["
|
121 |
],
|
122 |
)
|
123 |
|
|
|
1 |
import os
|
2 |
from threading import Thread
|
3 |
+
from typing import Iterator, List, Tuple
|
4 |
|
5 |
import gradio as gr
|
|
|
6 |
import torch
|
7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
8 |
|
9 |
+
# Constants
|
10 |
MAX_MAX_NEW_TOKENS = 2048
|
11 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
|
|
12 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
13 |
|
14 |
DESCRIPTION = """\
|
15 |
# DeepCode-6.7B-Chat
|
16 |
+
This Space demonstrates model [DeepCode-AI](https://huggingface.co/deepcode-ai/deepcode-ai-6.7b-instruct)
|
17 |
+
by DeepCode, a code model with 6.7B parameters fine-tuned for chat instructions.
|
18 |
"""
|
19 |
|
20 |
if not torch.cuda.is_available():
|
21 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
22 |
+
model = None
|
23 |
+
else:
|
|
|
24 |
model_id = "deepcode-ai/deepcode-ai-6.7b-instruct"
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
model_id, torch_dtype=torch.bfloat16, device_map="auto"
|
27 |
+
)
|
28 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
29 |
tokenizer.use_default_system_prompt = False
|
|
|
30 |
|
31 |
|
32 |
+
def trim_input_ids(input_ids: torch.Tensor) -> torch.Tensor:
|
33 |
+
"""
|
34 |
+
Trim input_ids to fit within the MAX_INPUT_TOKEN_LENGTH.
|
35 |
+
"""
|
36 |
+
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
37 |
+
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
38 |
+
gr.Warning(f"Trimmed input as it exceeded {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
39 |
+
return input_ids
|
40 |
+
|
41 |
+
|
42 |
+
def build_conversation(message: str, chat_history: List[Tuple[str, str]], system_prompt: str) -> List[dict]:
|
43 |
+
"""
|
44 |
+
Build the conversation structure for the chat model.
|
45 |
+
"""
|
46 |
+
conversation = []
|
47 |
+
if system_prompt:
|
48 |
+
conversation.append({"role": "system", "content": system_prompt})
|
49 |
+
for user, assistant in chat_history:
|
50 |
+
conversation.extend([
|
51 |
+
{"role": "user", "content": user},
|
52 |
+
{"role": "assistant", "content": assistant}
|
53 |
+
])
|
54 |
+
conversation.append({"role": "user", "content": message})
|
55 |
+
return conversation
|
56 |
+
|
57 |
+
|
58 |
def generate(
|
59 |
message: str,
|
60 |
+
chat_history: List[Tuple[str, str]],
|
61 |
system_prompt: str,
|
62 |
+
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
|
63 |
temperature: float = 0.6,
|
64 |
top_p: float = 0.9,
|
65 |
top_k: int = 50,
|
66 |
+
repetition_penalty: float = 1.0,
|
67 |
) -> Iterator[str]:
|
68 |
+
if model is None:
|
69 |
+
yield "GPU is unavailable. This demo does not run on CPU."
|
70 |
+
return
|
|
|
|
|
|
|
71 |
|
72 |
+
conversation = build_conversation(message, chat_history, system_prompt)
|
73 |
+
input_ids = tokenizer.apply_chat_template(
|
74 |
+
conversation, return_tensors="pt", add_generation_prompt=True
|
75 |
+
)
|
76 |
+
input_ids = trim_input_ids(input_ids.to(model.device))
|
77 |
|
78 |
+
streamer = TextIteratorStreamer(
|
79 |
+
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
80 |
+
)
|
81 |
generate_kwargs = dict(
|
82 |
+
input_ids=input_ids,
|
83 |
streamer=streamer,
|
84 |
max_new_tokens=max_new_tokens,
|
85 |
do_sample=False,
|
86 |
num_beams=1,
|
87 |
repetition_penalty=repetition_penalty,
|
88 |
+
eos_token_id=tokenizer.eos_token_id,
|
89 |
)
|
90 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
91 |
t.start()
|
92 |
|
93 |
outputs = []
|
94 |
+
try:
|
95 |
+
for text in streamer:
|
96 |
+
outputs.append(text)
|
97 |
+
yield "".join(outputs).replace("<|EOT|>", "")
|
98 |
+
except Exception as e:
|
99 |
+
yield f"Error during generation: {e}"
|
100 |
|
101 |
|
102 |
+
# Gradio Interface
|
103 |
chat_interface = gr.ChatInterface(
|
104 |
fn=generate,
|
105 |
additional_inputs=[
|
|
|
111 |
step=1,
|
112 |
value=DEFAULT_MAX_NEW_TOKENS,
|
113 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
gr.Slider(
|
115 |
label="Top-p (nucleus sampling)",
|
116 |
minimum=0.05,
|
|
|
130 |
minimum=1.0,
|
131 |
maximum=2.0,
|
132 |
step=0.05,
|
133 |
+
value=1.0,
|
134 |
),
|
135 |
],
|
|
|
136 |
examples=[
|
137 |
+
["Implement snake game using pygame"],
|
138 |
+
["Can you explain what the Python programming language is?"],
|
139 |
+
["Write a program to find the factorial of a number"],
|
140 |
],
|
141 |
)
|
142 |
|