Spaces:
Running
Running
File size: 4,756 Bytes
3c7d8d9 681a350 3c7d8d9 a54d829 84a3dfc 3c7d8d9 4737e31 8537a9b ecfa7a3 3c7d8d9 c2a197a 3c7d8d9 681a350 71df424 9ecc7a5 1557500 0cc211e 532d724 84a3dfc 681a350 3c7d8d9 681a350 3c7d8d9 4737e31 3c7d8d9 681a350 175cb6c 681a350 defe89e 681a350 3c7d8d9 681a350 3c7d8d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import json
import os
from collections import defaultdict
from functools import lru_cache
from typing import List, Dict
import faiss
import gradio as gr
import numpy as np
from PIL import Image
from cheesechaser.datapool import YandeWebpDataPool, ZerochanWebpDataPool, GelbooruWebpDataPool, \
KonachanWebpDataPool, AnimePicturesWebpDataPool, DanbooruNewestWebpDataPool, Rule34WebpDataPool
from hfutils.operate import get_hf_fs, get_hf_client
from hfutils.utils import TemporaryDirectory
from imgutils.tagging import wd14
from pools import quick_webp_pool
_REPO_ID = 'deepghs/anime_sites_indices'
hf_fs = get_hf_fs()
hf_client = get_hf_client()
_DEFAULT_MODEL_NAME = 'SwinV2_v3_iqdb_10_46796044_8GB'
_ALL_MODEL_NAMES = [
os.path.dirname(os.path.relpath(path, _REPO_ID))
for path in hf_fs.glob(f'{_REPO_ID}/*/knn.index')
]
_SITE_CLS = {
'danbooru': DanbooruNewestWebpDataPool,
'yandere': YandeWebpDataPool,
'zerochan': ZerochanWebpDataPool,
'gelbooru': GelbooruWebpDataPool,
'konachan': KonachanWebpDataPool,
'anime_pictures': AnimePicturesWebpDataPool,
'rule34': Rule34WebpDataPool,
}
def _get_from_ids(site_name: str, ids: List[int]) -> Dict[int, Image.Image]:
with TemporaryDirectory() as td:
site_cls = _SITE_CLS.get(site_name) or quick_webp_pool(site_name, 3)
datapool = site_cls()
datapool.batch_download_to_directory(
resource_ids=ids,
dst_dir=td,
)
retval = {}
for file in os.listdir(td):
id_ = int(os.path.splitext(file)[0])
image = Image.open(os.path.join(td, file))
image.load()
retval[id_] = image
return retval
def _get_from_raw_ids(ids: List[str]) -> Dict[str, Image.Image]:
_sites = defaultdict(list)
for id_ in ids:
site_name, num_id = id_.rsplit('_', maxsplit=1)
num_id = int(num_id)
_sites[site_name].append(num_id)
_retval = {}
for site_name, site_ids in _sites.items():
_retval.update({
f'{site_name}_{id_}': image
for id_, image in _get_from_ids(site_name, site_ids).items()
})
return _retval
@lru_cache(maxsize=3)
def _get_index_info(repo_id: str, model_name: str):
image_ids = np.load(hf_client.hf_hub_download(
repo_id=repo_id,
repo_type='model',
filename=f'{model_name}/ids.npy',
))
knn_index = faiss.read_index(hf_client.hf_hub_download(
repo_id=repo_id,
repo_type='model',
filename=f'{model_name}/knn.index',
))
config = json.loads(open(hf_client.hf_hub_download(
repo_id=repo_id,
repo_type='model',
filename=f'{model_name}/infos.json',
)).read())["index_param"]
faiss.ParameterSpace().set_index_parameters(knn_index, config)
return image_ids, knn_index
def search(model_name: str, img_input, n_neighbours: int):
images_ids, knn_index = _get_index_info(_REPO_ID, model_name)
embeddings = wd14.get_wd14_tags(
img_input,
model_name="SwinV2_v3",
fmt="embedding",
)
embeddings = np.expand_dims(embeddings, 0)
faiss.normalize_L2(embeddings)
dists, indexes = knn_index.search(embeddings, k=n_neighbours)
neighbours_ids = images_ids[indexes][0]
captions = []
images = []
ids_to_images = _get_from_raw_ids(neighbours_ids)
for image_id, dist in zip(neighbours_ids, dists[0]):
if image_id in ids_to_images:
images.append(ids_to_images[image_id])
captions.append(f"{image_id}/{dist:.2f}")
return list(zip(images, captions))
if __name__ == "__main__":
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
img_input = gr.Image(type="pil", label="Input")
with gr.Column():
with gr.Row():
n_model = gr.Dropdown(
choices=_ALL_MODEL_NAMES,
value=_DEFAULT_MODEL_NAME,
label='Index to Use',
)
with gr.Row():
n_neighbours = gr.Slider(
minimum=1,
maximum=50,
value=20,
step=1,
label="# of images",
)
find_btn = gr.Button("Find similar images")
with gr.Row():
similar_images = gr.Gallery(label="Similar images", columns=[5])
find_btn.click(
fn=search,
inputs=[
n_model,
img_input,
n_neighbours,
],
outputs=[similar_images],
)
demo.queue().launch()
|