Spaces:
Running
Running
File size: 8,246 Bytes
e0c7076 f6b3355 e0c7076 8fa7f48 e0c7076 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import streamlit as st
import pandas as pd
import requests
from bs4 import BeautifulSoup
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.manifold import TSNE
import numpy as np
from numpy.linalg import norm
import matplotlib.pyplot as plt
import plotly.express as px
import re
# Load the LaBSE model
@st.cache_resource
def load_model():
return SentenceTransformer("sentence-transformers/LaBSE")
model = load_model()
def fetch_sitemap_urls(domain):
"""Fetch and parse URLs from sitemaps, excluding images and handling nested sitemaps."""
domain = domain.replace("https://", "").replace("http://", "").strip("/")
sitemap_urls = [
f"https://{domain}/sitemap.xml",
f"https://{domain}/sitemap_index.xml",
f"https://{domain}/robots.txt"
]
all_urls = []
for sitemap_url in sitemap_urls:
try:
response = requests.get(sitemap_url, headers={"User-Agent": "SiteFocusTool/1.0"}, timeout=10)
response.raise_for_status()
if "robots.txt" in sitemap_url:
for line in response.text.splitlines():
if line.lower().startswith("sitemap:"):
nested_sitemap_url = line.split(":", 1)[1].strip()
all_urls.extend(fetch_sitemap_urls_from_xml(nested_sitemap_url, domain, recursive=True))
else:
all_urls.extend(fetch_sitemap_urls_from_xml(sitemap_url, domain, recursive=True))
except requests.RequestException:
continue
return list(set(all_urls))
def fetch_sitemap_urls_from_xml(sitemap_url, domain, recursive=False):
"""Fetch URLs from a sitemap XML file."""
urls = []
try:
response = requests.get(sitemap_url, headers={"User-Agent": "SiteFocusTool/1.0"}, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.content, "lxml-xml") # Use lxml parser
if soup.find_all("sitemap"):
for sitemap in soup.find_all("sitemap"):
loc = sitemap.find("loc").text
if recursive:
urls.extend(fetch_sitemap_urls_from_xml(loc, domain, recursive=True))
else:
for loc in soup.find_all("loc"):
url = loc.text
if not re.search(r"\.(jpg|jpeg|png|gif|svg|webp|bmp|tif|tiff)$", url, re.IGNORECASE):
urls.append(url)
except requests.RequestException:
pass
return urls
def clean_text_from_url(url, domain):
"""Clean URL by removing root domain and extracting readable text."""
domain = domain.replace("https://", "").replace("http://", "").strip("/")
url = url.replace(f"https://{domain}/", "").replace(f"http://{domain}/", "")
text = re.sub(r"[^\w\s]", " ", url)
text = text.replace("/", " ").replace("_", " ").replace("-", " ")
return text.strip()
def compute_embeddings(data):
"""Generate normalized embeddings for the cleaned text."""
data["Embedding"] = data["Cleaned Text"].apply(lambda text: model.encode(text))
data["Embedding"] = data["Embedding"].apply(lambda emb: emb / norm(emb)) # Normalize
return data
def calculate_site_focus_and_radius(embeddings):
"""Calculate site focus score and site radius."""
centroid_embedding = np.mean(embeddings, axis=0)
deviations = [1 - cosine_similarity([embedding], [centroid_embedding])[0][0] for embedding in embeddings]
site_radius = np.mean(deviations)
site_focus_score = max(0, 1 - site_radius)
return site_focus_score, site_radius, centroid_embedding, deviations
def plot_gradient_strip_with_indicator(score, title):
"""Visualize the score as a gradient strip with an indicator."""
plt.figure(figsize=(8, 1))
gradient = np.linspace(0, 1, 256).reshape(1, -1)
gradient = np.vstack((gradient, gradient))
plt.imshow(gradient, aspect="auto", cmap="RdYlGn_r") # Red to Green reversed for correct mapping
plt.axvline(x=score * 256, color="black", linestyle="--", linewidth=2)
plt.gca().set_axis_off()
plt.title(f"{title}: {score * 100:.2f}%")
plt.show()
st.pyplot(plt)
def plot_3d_tsne(embeddings, urls, centroid, deviations):
"""Interactive 3D t-SNE scatter plot with hover labels."""
tsne = TSNE(n_components=3, random_state=42, perplexity=min(30, len(embeddings) - 1))
tsne_results = tsne.fit_transform(np.vstack([embeddings, centroid]))
centroid_tsne = tsne_results[-1] # Last point is the centroid
tsne_results = tsne_results[:-1] # Remaining points are pages
fig = px.scatter_3d(
x=tsne_results[:, 0],
y=tsne_results[:, 1],
z=tsne_results[:, 2],
color=deviations,
color_continuous_scale="RdYlGn_r",
hover_name=urls,
labels={"color": "Deviation"},
title="3D t-SNE Projection of Page Embeddings"
)
fig.add_scatter3d(
x=[centroid_tsne[0]],
y=[centroid_tsne[1]],
z=[centroid_tsne[2]],
mode="markers",
marker=dict(size=15, color="green"),
name="Centroid"
)
st.plotly_chart(fig)
def plot_spherical_distances_optimized(deviations, embeddings, urls):
"""Improved scatter plot showing distances in a spherical layout with better angle distribution."""
# Normalize embeddings
normalized_embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
num_points = len(deviations)
angles = np.linspace(0, 2 * np.pi, num_points, endpoint=False) # Spread angles evenly
# Create polar scatter plot
fig = px.scatter_polar(
r=deviations,
theta=np.degrees(angles),
color=deviations,
color_continuous_scale="RdYlGn_r",
title="Optimized Spherical Plot of Page Distances from Centroid",
labels={"color": "Deviation"}
)
# Update traces to show text (labels) only on hover
fig.update_traces(
mode="markers", # Display only markers by default
hovertemplate="%{text}<extra></extra>", # Show text on hover
text=urls # Set URLs as hover labels
)
st.plotly_chart(fig)
# Streamlit Interface
st.title("SiteFocus Tool")
domain = st.text_input("Enter domain:", placeholder="example.com")
if st.button("START"):
if domain:
urls = fetch_sitemap_urls(domain)
if not urls:
st.error("No URLs found. Please check the domain and try again.")
else:
cleaned_texts = [clean_text_from_url(url, domain) for url in urls]
embeddings = np.array([model.encode(text) / norm(model.encode(text)) for text in cleaned_texts])
site_focus_score, site_radius, centroid, deviations = calculate_site_focus_and_radius(embeddings)
# Visualize siteFocusScore
st.subheader("siteFocusScore")
st.markdown("**Description:** The siteFocusScore reflects how tightly aligned a site's content is to a single thematic area. A higher score indicates greater thematic focus, which can improve topical authority in SEO.")
plot_gradient_strip_with_indicator(site_focus_score, "siteFocusScore")
# Visualize siteRadius
st.subheader("siteRadius")
st.markdown("**Description:** The siteRadius measures how far individual pages deviate from the site's central theme. A smaller radius indicates higher consistency across the site, which is beneficial for SEO.")
plot_gradient_strip_with_indicator(site_radius, "siteRadius")
# Sorted dataframe by closeness to centroid
st.subheader("Pages Closest to Centroid")
distances = [1 - dev for dev in deviations]
df = pd.DataFrame({"URL": urls, "Proximity to Centroid": distances})
df_sorted = df.sort_values(by="Proximity to Centroid", ascending=False)
st.dataframe(df_sorted)
# Interactive 3D t-SNE plot
st.subheader("3D t-SNE Projection")
plot_3d_tsne(embeddings, urls, centroid, deviations)
# Optimized spherical distance plot
st.subheader("Spherical Distance Plot")
plot_spherical_distances_optimized(deviations, embeddings, urls)
|