File size: 8,246 Bytes
e0c7076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6b3355
e0c7076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fa7f48
 
e0c7076
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import streamlit as st
import pandas as pd
import requests
from bs4 import BeautifulSoup
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.manifold import TSNE
import numpy as np
from numpy.linalg import norm
import matplotlib.pyplot as plt
import plotly.express as px
import re

# Load the LaBSE model
@st.cache_resource
def load_model():
    return SentenceTransformer("sentence-transformers/LaBSE")

model = load_model()

def fetch_sitemap_urls(domain):
    """Fetch and parse URLs from sitemaps, excluding images and handling nested sitemaps."""
    domain = domain.replace("https://", "").replace("http://", "").strip("/")
    sitemap_urls = [
        f"https://{domain}/sitemap.xml",
        f"https://{domain}/sitemap_index.xml",
        f"https://{domain}/robots.txt"
    ]
    all_urls = []

    for sitemap_url in sitemap_urls:
        try:
            response = requests.get(sitemap_url, headers={"User-Agent": "SiteFocusTool/1.0"}, timeout=10)
            response.raise_for_status()
            if "robots.txt" in sitemap_url:
                for line in response.text.splitlines():
                    if line.lower().startswith("sitemap:"):
                        nested_sitemap_url = line.split(":", 1)[1].strip()
                        all_urls.extend(fetch_sitemap_urls_from_xml(nested_sitemap_url, domain, recursive=True))
            else:
                all_urls.extend(fetch_sitemap_urls_from_xml(sitemap_url, domain, recursive=True))
        except requests.RequestException:
            continue
    return list(set(all_urls))

def fetch_sitemap_urls_from_xml(sitemap_url, domain, recursive=False):
    """Fetch URLs from a sitemap XML file."""
    urls = []
    try:
        response = requests.get(sitemap_url, headers={"User-Agent": "SiteFocusTool/1.0"}, timeout=10)
        response.raise_for_status()
        soup = BeautifulSoup(response.content, "lxml-xml")  # Use lxml parser
        if soup.find_all("sitemap"):
            for sitemap in soup.find_all("sitemap"):
                loc = sitemap.find("loc").text
                if recursive:
                    urls.extend(fetch_sitemap_urls_from_xml(loc, domain, recursive=True))
        else:
            for loc in soup.find_all("loc"):
                url = loc.text
                if not re.search(r"\.(jpg|jpeg|png|gif|svg|webp|bmp|tif|tiff)$", url, re.IGNORECASE):
                    urls.append(url)
    except requests.RequestException:
        pass
    return urls

def clean_text_from_url(url, domain):
    """Clean URL by removing root domain and extracting readable text."""
    domain = domain.replace("https://", "").replace("http://", "").strip("/")
    url = url.replace(f"https://{domain}/", "").replace(f"http://{domain}/", "")
    text = re.sub(r"[^\w\s]", " ", url)
    text = text.replace("/", " ").replace("_", " ").replace("-", " ")
    return text.strip()

def compute_embeddings(data):
    """Generate normalized embeddings for the cleaned text."""
    data["Embedding"] = data["Cleaned Text"].apply(lambda text: model.encode(text))
    data["Embedding"] = data["Embedding"].apply(lambda emb: emb / norm(emb))  # Normalize
    return data

def calculate_site_focus_and_radius(embeddings):
    """Calculate site focus score and site radius."""
    centroid_embedding = np.mean(embeddings, axis=0)
    deviations = [1 - cosine_similarity([embedding], [centroid_embedding])[0][0] for embedding in embeddings]
    site_radius = np.mean(deviations)
    site_focus_score = max(0, 1 - site_radius)
    return site_focus_score, site_radius, centroid_embedding, deviations

def plot_gradient_strip_with_indicator(score, title):
    """Visualize the score as a gradient strip with an indicator."""
    plt.figure(figsize=(8, 1))
    gradient = np.linspace(0, 1, 256).reshape(1, -1)
    gradient = np.vstack((gradient, gradient))
    plt.imshow(gradient, aspect="auto", cmap="RdYlGn_r")  # Red to Green reversed for correct mapping
    plt.axvline(x=score * 256, color="black", linestyle="--", linewidth=2)
    plt.gca().set_axis_off()
    plt.title(f"{title}: {score * 100:.2f}%")
    plt.show()
    st.pyplot(plt)

def plot_3d_tsne(embeddings, urls, centroid, deviations):
    """Interactive 3D t-SNE scatter plot with hover labels."""
    tsne = TSNE(n_components=3, random_state=42, perplexity=min(30, len(embeddings) - 1))
    tsne_results = tsne.fit_transform(np.vstack([embeddings, centroid]))
    centroid_tsne = tsne_results[-1]  # Last point is the centroid
    tsne_results = tsne_results[:-1]  # Remaining points are pages

    fig = px.scatter_3d(
        x=tsne_results[:, 0],
        y=tsne_results[:, 1],
        z=tsne_results[:, 2],
        color=deviations,
        color_continuous_scale="RdYlGn_r",
        hover_name=urls,
        labels={"color": "Deviation"},
        title="3D t-SNE Projection of Page Embeddings"
    )
    fig.add_scatter3d(
        x=[centroid_tsne[0]],
        y=[centroid_tsne[1]],
        z=[centroid_tsne[2]],
        mode="markers",
        marker=dict(size=15, color="green"),
        name="Centroid"
    )
    st.plotly_chart(fig)

def plot_spherical_distances_optimized(deviations, embeddings, urls):
    """Improved scatter plot showing distances in a spherical layout with better angle distribution."""
    # Normalize embeddings
    normalized_embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
    num_points = len(deviations)
    angles = np.linspace(0, 2 * np.pi, num_points, endpoint=False)  # Spread angles evenly

    # Create polar scatter plot
    fig = px.scatter_polar(
        r=deviations,
        theta=np.degrees(angles),
        color=deviations,
        color_continuous_scale="RdYlGn_r",
        title="Optimized Spherical Plot of Page Distances from Centroid",
        labels={"color": "Deviation"}
    )
    # Update traces to show text (labels) only on hover
    fig.update_traces(
        mode="markers",  # Display only markers by default
        hovertemplate="%{text}<extra></extra>",  # Show text on hover
        text=urls  # Set URLs as hover labels
    )
    st.plotly_chart(fig)

# Streamlit Interface
st.title("SiteFocus Tool")

domain = st.text_input("Enter domain:", placeholder="example.com")

if st.button("START"):
    if domain:
        urls = fetch_sitemap_urls(domain)
        if not urls:
            st.error("No URLs found. Please check the domain and try again.")
        else:
            cleaned_texts = [clean_text_from_url(url, domain) for url in urls]
            embeddings = np.array([model.encode(text) / norm(model.encode(text)) for text in cleaned_texts])
            site_focus_score, site_radius, centroid, deviations = calculate_site_focus_and_radius(embeddings)

            # Visualize siteFocusScore
            st.subheader("siteFocusScore")
            st.markdown("**Description:** The siteFocusScore reflects how tightly aligned a site's content is to a single thematic area. A higher score indicates greater thematic focus, which can improve topical authority in SEO.")
            plot_gradient_strip_with_indicator(site_focus_score, "siteFocusScore")

            # Visualize siteRadius
            st.subheader("siteRadius")
            st.markdown("**Description:** The siteRadius measures how far individual pages deviate from the site's central theme. A smaller radius indicates higher consistency across the site, which is beneficial for SEO.")
            plot_gradient_strip_with_indicator(site_radius, "siteRadius")

            # Sorted dataframe by closeness to centroid
            st.subheader("Pages Closest to Centroid")
            distances = [1 - dev for dev in deviations]
            df = pd.DataFrame({"URL": urls, "Proximity to Centroid": distances})
            df_sorted = df.sort_values(by="Proximity to Centroid", ascending=False)
            st.dataframe(df_sorted)

            # Interactive 3D t-SNE plot
            st.subheader("3D t-SNE Projection")
            plot_3d_tsne(embeddings, urls, centroid, deviations)

            # Optimized spherical distance plot
            st.subheader("Spherical Distance Plot")
            plot_spherical_distances_optimized(deviations, embeddings, urls)