dhanushreddy29 commited on
Commit
c14578e
·
1 Parent(s): ddbe218

Upload 5 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ examples/input/1.jpeg filter=lfs diff=lfs merge=lfs -text
37
+ examples/input/2.jpeg filter=lfs diff=lfs merge=lfs -text
38
+ examples/input/3.jpeg filter=lfs diff=lfs merge=lfs -text
examples/input/1.jpeg ADDED

Git LFS Details

  • SHA256: d2029e2327d26ab8186ad46ee6d082b3961c2513005e019f2e0bd6897b0ebbcf
  • Pointer size: 132 Bytes
  • Size of remote file: 1.56 MB
examples/input/2.jpeg ADDED

Git LFS Details

  • SHA256: b011e8498903cd148737400da8f9c77de6b0a775f8fb4d94d06e7c4f70afc307
  • Pointer size: 132 Bytes
  • Size of remote file: 1.46 MB
examples/input/3.jpeg ADDED

Git LFS Details

  • SHA256: 40b6cf2b59c90ef2d8f0a401e420a0c58c3ad10c9176c1481fca0769a4a912a1
  • Pointer size: 132 Bytes
  • Size of remote file: 1.61 MB
main.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ import numpy as np
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ from huggingface_hub import hf_hub_download
8
+ from torch.autograd import Variable
9
+ from PIL import Image
10
+
11
+
12
+ def build_model(hypar, device):
13
+ net = hypar["model"] # GOSNETINC(3,1)
14
+
15
+ # convert to half precision
16
+ if hypar["model_digit"] == "half":
17
+ net.half()
18
+ for layer in net.modules():
19
+ if isinstance(layer, nn.BatchNorm2d):
20
+ layer.float()
21
+
22
+ net.to(device)
23
+
24
+ if hypar["restore_model"] != "":
25
+ net.load_state_dict(
26
+ torch.load(
27
+ hypar["model_path"] + "/" + hypar["restore_model"],
28
+ map_location=device,
29
+ )
30
+ )
31
+ net.to(device)
32
+ net.eval()
33
+ return net
34
+
35
+
36
+ if not os.path.exists("saved_models"):
37
+ os.mkdir("saved_models")
38
+ os.mkdir("git")
39
+ os.system("git clone https://github.com/xuebinqin/DIS git/xuebinqin/DIS")
40
+ hf_hub_download(
41
+ repo_id="NimaBoscarino/IS-Net_DIS-general-use",
42
+ filename="isnet-general-use.pth",
43
+ local_dir="saved_models",
44
+ )
45
+ os.system("rm -r git/xuebinqin/DIS/IS-Net/__pycache__")
46
+ os.system("mv git/xuebinqin/DIS/IS-Net/* .")
47
+
48
+ import data_loader_cache
49
+ import models
50
+
51
+ device = "cpu"
52
+ ISNetDIS = models.ISNetDIS
53
+ normalize = data_loader_cache.normalize
54
+ im_preprocess = data_loader_cache.im_preprocess
55
+
56
+ # Set Parameters
57
+ hypar = {} # paramters for inferencing
58
+
59
+ # load trained weights from this path
60
+ hypar["model_path"] = "./saved_models"
61
+ # name of the to-be-loaded weights
62
+ hypar["restore_model"] = "isnet-general-use.pth"
63
+ # indicate if activate intermediate feature supervision
64
+ hypar["interm_sup"] = False
65
+
66
+ # choose floating point accuracy --
67
+ # indicates "half" or "full" accuracy of float number
68
+ hypar["model_digit"] = "full"
69
+ hypar["seed"] = 0
70
+
71
+ # cached input spatial resolution, can be configured into different size
72
+ hypar["cache_size"] = [1024, 1024]
73
+
74
+ # data augmentation parameters ---
75
+ # mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images
76
+ hypar["input_size"] = [1024, 1024]
77
+ # random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation
78
+ hypar["crop_size"] = [1024, 1024]
79
+
80
+ hypar["model"] = ISNetDIS()
81
+
82
+ # Build Model
83
+ net = build_model(hypar, device)
84
+
85
+
86
+ def predict(net, inputs_val, shapes_val, hypar, device):
87
+ """
88
+ Given an Image, predict the mask
89
+ """
90
+ net.eval()
91
+
92
+ if hypar["model_digit"] == "full":
93
+ inputs_val = inputs_val.type(torch.FloatTensor)
94
+ else:
95
+ inputs_val = inputs_val.type(torch.HalfTensor)
96
+
97
+ inputs_val_v = Variable(inputs_val, requires_grad=False).to(
98
+ device
99
+ ) # wrap inputs in Variable
100
+
101
+ ds_val = net(inputs_val_v)[0] # list of 6 results
102
+
103
+ # B x 1 x H x W # we want the first one which is the most accurate prediction
104
+ pred_val = ds_val[0][0, :, :, :]
105
+
106
+ # recover the prediction spatial size to the orignal image size
107
+ pred_val = torch.squeeze(
108
+ F.upsample(
109
+ torch.unsqueeze(pred_val, 0),
110
+ (shapes_val[0][0], shapes_val[0][1]),
111
+ mode="bilinear",
112
+ )
113
+ )
114
+
115
+ ma = torch.max(pred_val)
116
+ mi = torch.min(pred_val)
117
+ pred_val = (pred_val - mi) / (ma - mi) # max = 1
118
+
119
+ if device == "cpu":
120
+ torch.cpu.empty_cache()
121
+ # it is the mask we need
122
+ return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8)
123
+
124
+
125
+ def load_image(im_pil, hypar):
126
+ im = np.array(im_pil)
127
+ im, im_shp = im_preprocess(im, hypar["cache_size"])
128
+ im = torch.divide(im, 255.0)
129
+ shape = torch.from_numpy(np.array(im_shp))
130
+ # make a batch of image, shape
131
+ aa = normalize(im, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
132
+ return aa.unsqueeze(0), shape.unsqueeze(0)
133
+
134
+
135
+ def remove_background(image):
136
+ image_tensor, orig_size = load_image(image, hypar)
137
+ mask = predict(net, image_tensor, orig_size, hypar, "cpu")
138
+
139
+ mask = Image.fromarray(mask).convert("L")
140
+ im_rgb = image.convert("RGB")
141
+
142
+ cropped = im_rgb.copy()
143
+ cropped.putalpha(mask)
144
+ return cropped
145
+
146
+
147
+ inputs = gr.inputs.Image()
148
+ outputs = gr.outputs.Image(type="pil")
149
+ interface = gr.Interface(
150
+ fn=remove_background,
151
+ inputs=inputs,
152
+ outputs=outputs,
153
+ title="Remove Background",
154
+ description="This App removes the background from an image",
155
+ examples=[
156
+ "examples/input/1.jpeg",
157
+ "examples/input/2.jpeg",
158
+ "examples/input/3.jpeg",
159
+ ],
160
+ cache_examples=True,
161
+ )
162
+ interface.launch(enable_queue=True)
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ gradio==3.14.0
2
+ Pillow
3
+ huggingface-hub
4
+ torch
5
+ numpy