Spaces:
Sleeping
Sleeping
divakaivan
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -43,6 +43,18 @@ def synthesize_speech(text):
|
|
43 |
return (16000, speech)
|
44 |
|
45 |
def create_speaker_embedding(waveform):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
with torch.no_grad():
|
47 |
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
|
48 |
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
|
|
|
43 |
return (16000, speech)
|
44 |
|
45 |
def create_speaker_embedding(waveform):
|
46 |
+
|
47 |
+
import os
|
48 |
+
from speechbrain.inference.speaker import EncoderClassifier
|
49 |
+
|
50 |
+
spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
|
51 |
+
|
52 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
53 |
+
speaker_model = EncoderClassifier.from_hparams(
|
54 |
+
source=spk_model_name,
|
55 |
+
run_opts={"device": device},
|
56 |
+
savedir=os.path.join("/tmp", spk_model_name),
|
57 |
+
)
|
58 |
with torch.no_grad():
|
59 |
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
|
60 |
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
|