File size: 6,145 Bytes
ae71d4b
 
 
 
 
 
830a7a9
 
 
 
 
 
 
 
 
 
 
6be28a0
830a7a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
908706b
830a7a9
ae71d4b
 
 
 
 
3e188e1
bbb7e65
3e188e1
 
bbb7e65
830a7a9
908706b
6742dfa
014aba2
6742dfa
3e188e1
 
ae71d4b
 
 
 
 
6be28a0
ae71d4b
 
 
 
 
 
 
ff0047d
ae71d4b
 
caaf71e
ae71d4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import gradio as gr
import librosa
import numpy as np
import torch

from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from datasets import load_dataset, Audio

dataset = load_dataset(
    "divakaivan/glaswegian_audio"
)

dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))['train']

from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech

processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("divakaivan/glaswegian_tts")

tokenizer = processor.tokenizer

def extract_all_chars(batch):
    all_text = " ".join(batch["transcription"])
    vocab = list(set(all_text))
    return {"vocab": [vocab], "all_text": [all_text]}

vocabs = dataset.map(
    extract_all_chars, 
    batched=True, 
    batch_size=-1, 
    keep_in_memory=True, 
    remove_columns=dataset.column_names,
)

dataset_vocab = set(vocabs["vocab"][0])
tokenizer_vocab = {k for k,_ in tokenizer.get_vocab().items()}

replacements = [
    ('à', 'a'),
    ('ç', 'c'),
    ('è', 'e'),
    ('ë', 'e'),
    ('í', 'i'),
    ('ï', 'i'),
    ('ö', 'o'),
    ('ü', 'u'),
]

def cleanup_text(inputs):
    for src, dst in replacements:
        inputs["transcription"] = inputs["transcription"].replace(src, dst)
    return inputs

dataset = dataset.map(cleanup_text)

import os
import torch
from speechbrain.inference.speaker import EncoderClassifier

spk_model_name = "speechbrain/spkrec-xvect-voxceleb"

device = "cuda" if torch.cuda.is_available() else "cpu"
speaker_model = EncoderClassifier.from_hparams(
    source=spk_model_name, 
    run_opts={"device": device}, 
    savedir=os.path.join("/tmp", spk_model_name),
)

def create_speaker_embedding(waveform):
    with torch.no_grad():
        speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
        speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
        speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy()
    return speaker_embeddings


def prepare_dataset(example):
    # load the audio data; if necessary, this resamples the audio to 16kHz
    audio = example["audio"]

    # feature extraction and tokenization
    example = processor(
        text=example["transcription"],
        audio_target=audio["array"], 
        sampling_rate=audio["sampling_rate"],
        return_attention_mask=False,
    )

    # strip off the batch dimension
    example["labels"] = example["labels"][0]

    # use SpeechBrain to obtain x-vector
    example["speaker_embeddings"] = create_speaker_embedding(audio["array"])

    return example

processed_example = prepare_dataset(dataset[0])
from transformers import SpeechT5HifiGan
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")

spectrogram = torch.tensor(processed_example["labels"])
with torch.no_grad():
    speech = vocoder(spectrogram)

dataset = dataset.map(
    prepare_dataset, remove_columns=dataset.column_names,
)

dataset = dataset.train_test_split(test_size=0.1)

def predict(text, speaker):
    if len(text.strip()) == 0:
        return (16000, np.zeros(0).astype(np.int16))

    inputs = processor(text=text, return_tensors="pt")
    
    # limit input length
    # input_ids = inputs["input_ids"]
    # input_ids = input_ids[..., :model.config.max_text_positions]

    ### ### ### 
    example = dataset['test'][11]
    speaker_embeddings = torch.tensor(example["speaker_embeddings"]).unsqueeze(0)
    
    spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
    with torch.no_grad():
        speech = vocoder(spectrogram)

    speech = (speech.numpy() * 32767).astype(np.int16)
    return (16000, speech)


title = "Glaswegian TTS"

description = """
The <b>SpeechT5</b> model is pre-trained on text as well as speech inputs, with targets that are also a mix of text and speech.
By pre-training on text and speech at the same time, it learns unified representations for both, resulting in improved modeling capabilities.
SpeechT5 can be fine-tuned for different speech tasks. This space demonstrates the <b>text-to-speech</b> (TTS) checkpoint for the English language.
See also the <a href="https://huggingface.co/spaces/Matthijs/speecht5-asr-demo">speech recognition (ASR) demo</a>
and the <a href="https://huggingface.co/spaces/Matthijs/speecht5-vc-demo">voice conversion demo</a>.
Refer to <a href="https://colab.research.google.com/drive/1i7I5pzBcU3WDFarDnzweIj4-sVVoIUFJ">this Colab notebook</a> to learn how to fine-tune the SpeechT5 TTS model on your own dataset or language.
<b>How to use:</b> Enter some English text and choose a speaker. The output is a mel spectrogram, which is converted to a mono 16 kHz waveform by the
HiFi-GAN vocoder. Because the model always applies random dropout, each attempt will give slightly different results.
The <em>Surprise Me!</em> option creates a completely randomized speaker.
"""

article = """
<div style='margin:20px auto;'>
<p>References: <a href="https://arxiv.org/abs/2110.07205">SpeechT5 paper</a> |
<a href="https://github.com/microsoft/SpeechT5/">original GitHub</a> |
<a href="https://huggingface.co/mechanicalsea/speecht5-tts">original weights</a></p>
<pre>
@article{Ao2021SpeechT5,
  title   = {SpeechT5: Unified-Modal Encoder-Decoder Pre-training for Spoken Language Processing},
  author  = {Junyi Ao and Rui Wang and Long Zhou and Chengyi Wang and Shuo Ren and Yu Wu and Shujie Liu and Tom Ko and Qing Li and Yu Zhang and Zhihua Wei and Yao Qian and Jinyu Li and Furu Wei},
  eprint={2110.07205},
  archivePrefix={arXiv},
  primaryClass={eess.AS},
  year={2021}
}
</pre>
<p>Speaker embeddings were generated from <a href="http://www.festvox.org/cmu_arctic/">CMU ARCTIC</a> using <a href="https://huggingface.co/mechanicalsea/speecht5-vc/blob/main/manifest/utils/prep_cmu_arctic_spkemb.py">this script</a>.</p>
</div>
"""


gr.Interface(
    fn=predict,
    inputs=[
        gr.Text(label="Input Text"),
    ],
    outputs=[
        gr.Audio(label="Generated Speech", type="numpy"),
    ],
    title=title,
    description=description,
    article=article,
).launch()