divakaivan's picture
Update app.py
aa4c2b6 verified
raw
history blame
4.14 kB
import gradio as gr
import librosa
import numpy as np
import torch
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from datasets import load_dataset, Audio
dataset = load_dataset(
"divakaivan/glaswegian_audio"
)
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))['train']
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("divakaivan/glaswegian_tts")
tokenizer = processor.tokenizer
def extract_all_chars(batch):
all_text = " ".join(batch["transcription"])
vocab = list(set(all_text))
return {"vocab": [vocab], "all_text": [all_text]}
vocabs = dataset.map(
extract_all_chars,
batched=True,
batch_size=-1,
keep_in_memory=True,
remove_columns=dataset.column_names,
)
dataset_vocab = set(vocabs["vocab"][0])
tokenizer_vocab = {k for k,_ in tokenizer.get_vocab().items()}
replacements = [
('à', 'a'),
('ç', 'c'),
('è', 'e'),
('ë', 'e'),
('í', 'i'),
('ï', 'i'),
('ö', 'o'),
('ü', 'u'),
]
def cleanup_text(inputs):
for src, dst in replacements:
inputs["transcription"] = inputs["transcription"].replace(src, dst)
return inputs
dataset = dataset.map(cleanup_text)
import os
import torch
from speechbrain.inference.speaker import EncoderClassifier
spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
device = "cuda" if torch.cuda.is_available() else "cpu"
speaker_model = EncoderClassifier.from_hparams(
source=spk_model_name,
run_opts={"device": device},
savedir=os.path.join("/tmp", spk_model_name),
)
def create_speaker_embedding(waveform):
with torch.no_grad():
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy()
return speaker_embeddings
def prepare_dataset(example):
# load the audio data; if necessary, this resamples the audio to 16kHz
audio = example["audio"]
# feature extraction and tokenization
example = processor(
text=example["transcription"],
audio_target=audio["array"],
sampling_rate=audio["sampling_rate"],
return_attention_mask=False,
)
# strip off the batch dimension
example["labels"] = example["labels"][0]
# use SpeechBrain to obtain x-vector
example["speaker_embeddings"] = create_speaker_embedding(audio["array"])
return example
processed_example = prepare_dataset(dataset[0])
from transformers import SpeechT5HifiGan
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
spectrogram = torch.tensor(processed_example["labels"])
with torch.no_grad():
speech = vocoder(spectrogram)
dataset = dataset.map(
prepare_dataset, remove_columns=dataset.column_names,
)
dataset = dataset.train_test_split(test_size=0.1)
def predict(text, speaker):
if len(text.strip()) == 0:
return (16000, np.zeros(0).astype(np.int16))
inputs = processor(text=text, return_tensors="pt")
# limit input length
# input_ids = inputs["input_ids"]
# input_ids = input_ids[..., :model.config.max_text_positions]
### ### ###
example = dataset['test'][11]
speaker_embeddings = torch.tensor(example["speaker_embeddings"]).unsqueeze(0)
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
with torch.no_grad():
speech = vocoder(spectrogram)
speech = (speech.numpy() * 32767).astype(np.int16)
return (16000, speech)
title = "Glaswegian TTS"
article = "Model fine-tuned and gradle demo generated thanks to this notebook: https://colab.research.google.com/drive/1i7I5pzBcU3WDFarDnzweIj4-sVVoIUFJ#scrollTo=wm7B3zxrumfF"
gr.Interface(
fn=predict,
inputs=[
gr.Text(label="Input Text"),
],
outputs=[
gr.Audio(label="Generated Speech", type="numpy"),
],
title=title,
article=article,
).launch()