jeffaudi commited on
Commit
5738e29
·
1 Parent(s): b350783

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,10 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ demo/demo.jpg filter=lfs diff=lfs merge=lfs -text
37
+ demo/dota_demo.jpg filter=lfs diff=lfs merge=lfs -text
38
+ demo/Pleiades_HD15_Miami_Marina.jpg filter=lfs diff=lfs merge=lfs -text
39
+ demo/Pleiades_Neo_Tucson_USA.jpg filter=lfs diff=lfs merge=lfs -text
40
+ demo/SPOT_Storage.jpg filter=lfs diff=lfs merge=lfs -text
41
+ demo/Satellite_Image_Marina_New_Zealand.jpg filter=lfs diff=lfs merge=lfs -text
42
+ demo/airport01.jpg filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import socket
3
+ import time
4
+ import gradio as gr
5
+ import numpy as np
6
+ from PIL import Image, ImageDraw
7
+ import base64
8
+ import requests
9
+ import json
10
+
11
+ # API for inferences
12
+ DL4EO_API_URL = "https://dl4eo--object-predict-raster.modal.run"
13
+
14
+ # Auth Token to access API
15
+ DL4EO_API_KEY = os.environ['DL4EO_API_KEY']
16
+
17
+ # width of the boxes on image
18
+ LINE_WIDTH = 2
19
+
20
+ # Check Gradio version
21
+ print(f"Gradio version: {gr.__version__}")
22
+
23
+ # Define the inference function
24
+ def predict_image(img, threshold):
25
+
26
+ if isinstance(img, Image.Image):
27
+ img = np.array(img)
28
+
29
+ if not isinstance(img, np.ndarray) or len(img.shape) != 3 or img.shape[2] != 3:
30
+ raise BaseException("predit_image(): input 'img' shoud be single RGB image in PIL or Numpy array format.")
31
+
32
+ # Encode the image data as base64
33
+ image_base64 = base64.b64encode(np.ascontiguousarray(img)).decode()
34
+
35
+ # Create a dictionary representing the JSON payload
36
+ payload = {
37
+ 'image': image_base64,
38
+ 'shape': img.shape,
39
+ 'threshold': threshold,
40
+ }
41
+
42
+ headers = {
43
+ 'Authorization': 'Bearer ' + DL4EO_API_KEY,
44
+ 'Content-Type': 'application/json' # Adjust the content type as needed
45
+ }
46
+
47
+ # Send the POST request to the API endpoint with the image file as binary payload
48
+ response = requests.post(DL4EO_API_URL, json=payload, headers=headers)
49
+
50
+ # Check the response status
51
+ if response.status_code != 200:
52
+ raise Exception(
53
+ f"Received status code={response.status_code} in inference API"
54
+ )
55
+
56
+ json_data = json.loads(response.content)
57
+ pil_img = json_data['image']
58
+ shape = json_data['shape']
59
+ infos = json_data['infos']
60
+ duration = json_data['duration']
61
+
62
+ return pil_img, shape, infos, duration
63
+
64
+
65
+ # Define example images and their true labels for users to choose from
66
+ example_data = [
67
+ ["./demo/demo.jpg", 0.8],
68
+ ["./demo/dota_demo.jpg", 0.8],
69
+ ["./demo/Satellite_Image_Marina_New_Zealand.jpg", 0.8],
70
+ ["./demo/Pleiades_HD15_Miami_Marina.jpg", 0.8],
71
+ ["./demo/SPOT_Storage.jpg", 0.8],
72
+ ["./demo/airport01.jpg", 0.8],
73
+ ["./demo/Pleiades_Neo_Tucson_USA.jpg", 0.8],
74
+ # Add more example images and labels as needed
75
+ ]
76
+
77
+ # Define CSS for some elements
78
+ css = """
79
+ .image-preview {
80
+ height: 820px !important;
81
+ width: 800px !important;
82
+ }
83
+ """
84
+
85
+ TITLE = "Oriented bounding boxes detection on Optical Satellite images"
86
+
87
+ # Define the Gradio Interface
88
+ demo = gr.Blocks(title=TITLE, css=css).queue()
89
+ with demo:
90
+ gr.Markdown(f"<h3><center>{TITLE}<center><h3>")
91
+
92
+ with gr.Row():
93
+ with gr.Column(scale=0):
94
+ input_image = gr.Image(type="pil", interactive=True)
95
+ run_button = gr.Button(value="Run")
96
+ with gr.Accordion("Advanced options", open=True):
97
+ threshold = gr.Slider(label="Confidence threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.01)
98
+ dimensions = gr.Textbox(label="Image size", interactive=False)
99
+ detections = gr.Textbox(label="Predicted objects", interactive=False)
100
+ stopwatch = gr.Number(label="Execution time (sec.)", interactive=False, precision=3)
101
+
102
+ with gr.Column(scale=2):
103
+ output_image = gr.Image(type="pil", elem_classes='image-preview', interactive=False)
104
+
105
+ run_button.click(fn=predict_image, inputs=[input_image, threshold], outputs=[output_image, dimensions, detections, stopwatch])
106
+ gr.Examples(
107
+ examples=example_data,
108
+ inputs = [input_image, threshold],
109
+ outputs = [output_image, dimensions, detections, stopwatch],
110
+ fn=predict_image,
111
+ #cache_examples=True,
112
+ label='Try these images!'
113
+ )
114
+
115
+ gr.Markdown("""
116
+ <p>This demo is provided by <a href='https://www.linkedin.com/in/faudi/'>Jeff Faudi</a> and <a href='https://www.dl4eo.com/'>DL4EO</a>.
117
+ This model is based on the <a href='https://github.com/open-mmlab/mmrotate'>MMRotate framework</a> which provides oriented bounding boxes.
118
+ We believe that oriented bouding boxes are better suited for detection in satellite images. This model has been trained on the
119
+ <a href='https://captain-whu.github.io/DOTA/dataset.html'>DOTA dataset</a> which contains 15 classes: plane, ship, storage tank,
120
+ baseball diamond, tennis court, basketball court, ground track field, harbor, bridge, large vehicle, small vehicle, helicopter,
121
+ roundabout, soccer ball field and swimming pool. </p><p>The associated licenses are
122
+ <a href='https://about.google/brand-resource-center/products-and-services/geo-guidelines/#google-earth-web-and-apps'>GoogleEarth fair use</a>
123
+ and <a href='https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en'>CC-BY-SA-NC</a>. This demonstration CANNOT be used for commercial puposes.
124
+ Please contact <a href='mailto:[email protected]'>me</a> for more information on how you could get access to a commercial grade model or API. </p>")
125
+ """)
126
+
127
+ demo.launch(
128
+ inline=False,
129
+ show_api=False,
130
+ debug=False
131
+ )
demo/Pleiades_HD15_Miami_Marina.jpg ADDED

Git LFS Details

  • SHA256: fa33637d5c88610ac408043a1318995a765d3439cbf7812e301328541c390098
  • Pointer size: 132 Bytes
  • Size of remote file: 9.34 MB
demo/Pleiades_Neo_Tucson_USA.jpg ADDED

Git LFS Details

  • SHA256: 88871a2df31320934e4b69c6c7bfd48cc30ab5ca833abcd875c6e017be80a330
  • Pointer size: 131 Bytes
  • Size of remote file: 779 kB
demo/SPOT_Storage.jpg ADDED

Git LFS Details

  • SHA256: 40db23426e4aa790158f1456c08a405a260abd0e77df03cfd70cf93d015e710d
  • Pointer size: 132 Bytes
  • Size of remote file: 1.24 MB
demo/Satellite_Image_Marina_New_Zealand.jpg ADDED

Git LFS Details

  • SHA256: 2c4ee19d2cf16ea06dc12732b83e944bfab424afb93ba7f842b4d544aceff494
  • Pointer size: 131 Bytes
  • Size of remote file: 564 kB
demo/airport01.jpg ADDED

Git LFS Details

  • SHA256: ce5958cea150b5a1011fdcd971910bca0eeec2307a948b634fe1bb2396514a84
  • Pointer size: 131 Bytes
  • Size of remote file: 969 kB
demo/demo.jpg ADDED

Git LFS Details

  • SHA256: 034ee7449fae9d760c710ea282be55b33f8a6d308d8fdc88e69bcc0c612433a6
  • Pointer size: 131 Bytes
  • Size of remote file: 408 kB
demo/dota_demo.jpg ADDED

Git LFS Details

  • SHA256: b32bf858d7136a82679d1a9f117d2fbad01fadb453099282f02d5168aae45140
  • Pointer size: 131 Bytes
  • Size of remote file: 282 kB