Spaces:
Runtime error
Runtime error
File size: 9,091 Bytes
7fbcea5 00e4b2e 7fbcea5 4c36cd4 7fbcea5 4c36cd4 7fbcea5 4c36cd4 7fbcea5 69d7ac6 7fbcea5 4c36cd4 7fbcea5 4c36cd4 7fbcea5 4c36cd4 00e4b2e 4c36cd4 00e4b2e 7fbcea5 69d7ac6 4c36cd4 7fbcea5 4c36cd4 7fbcea5 4c36cd4 7fbcea5 7cfb21e 7fbcea5 577cb80 7cfb21e 00e4b2e 577cb80 69d7ac6 00e4b2e 7cfb21e 00e4b2e 7fbcea5 00e4b2e 7cfb21e 00e4b2e 69d7ac6 4c36cd4 7fbcea5 8890bde 7fbcea5 8890bde 7fbcea5 00e4b2e 4c36cd4 7fbcea5 4c36cd4 7fbcea5 4c36cd4 7fbcea5 4c36cd4 7fbcea5 4c36cd4 7fbcea5 4c36cd4 7fbcea5 4c36cd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import streamlit as st
from transformers import pipeline, AutoTokenizer, AutoModelWithLMHead
import requests
from bs4 import BeautifulSoup
from nltk.corpus import stopwords
import nltk
import string
from streamlit.components.v1 import html
from sentence_transformers.cross_encoder import CrossEncoder as CE
import numpy as np
from typing import List, Tuple
import torch
class CrossEncoder:
def __init__(self, model_path: str, **kwargs):
self.model = CE(model_path, **kwargs)
def predict(self, sentences: List[Tuple[str,str]], batch_size: int = 32, show_progress_bar: bool = True) -> List[float]:
return self.model.predict(
sentences=sentences,
batch_size=batch_size,
show_progress_bar=show_progress_bar)
SCITE_API_KEY = st.secrets["SCITE_API_KEY"]
def remove_html(x):
soup = BeautifulSoup(x, 'html.parser')
text = soup.get_text()
return text
def search(term, limit=10, clean=True, strict=True):
term = clean_query(term, clean=clean, strict=strict)
# heuristic, 2 searches strict and not? and then merge?
search = f"https://api.scite.ai/search?mode=citations&term={term}&limit={limit}&offset=0&user_slug=domenic-rosati-keW5&compute_aggregations=false"
req = requests.get(
search,
headers={
'Authorization': f'Bearer {SCITE_API_KEY}'
}
)
try:
req.json()
except:
return [], []
return (
[remove_html('\n'.join([cite['snippet'] for cite in doc['citations']])) for doc in req.json()['hits']],
[(doc['doi'], doc['citations'], doc['title'])
for doc in req.json()['hits']]
)
def find_source(text, docs):
for doc in docs:
if text in remove_html(doc[1][0]['snippet']):
new_text = text
for snip in remove_html(doc[1][0]['snippet']).split('.'):
if text in snip:
new_text = snip
return {
'citation_statement': doc[1][0]['snippet'].replace('<strong class="highlight">', '').replace('</strong>', ''),
'text': new_text,
'from': doc[1][0]['source'],
'supporting': doc[1][0]['target'],
'source_title': doc[2],
'source_link': f"https://scite.ai/reports/{doc[0]}"
}
return None
@st.experimental_singleton
def init_models():
nltk.download('stopwords')
stop = set(stopwords.words('english') + list(string.punctuation))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
question_answerer = pipeline(
"question-answering", model='sultan/BioM-ELECTRA-Large-SQuAD2-BioASQ8B',
device=device
)
reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', device=device)
queryexp_tokenizer = AutoTokenizer.from_pretrained("doc2query/all-with_prefix-t5-base-v1")
queryexp_model = AutoModelWithLMHead.from_pretrained("doc2query/all-with_prefix-t5-base-v1")
return question_answerer, reranker, stop, device, queryexp_model, queryexp_tokenizer
qa_model, reranker, stop, device, queryexp_model, queryexp_tokenizer = init_models()
def clean_query(query, strict=True, clean=True):
operator = ' '
if strict:
operator = ' AND '
query = operator.join(
[i for i in query.lower().split(' ') if clean and i not in stop])
if clean:
query = query.translate(str.maketrans('', '', string.punctuation))
return query
def card(title, context, score, link, supporting):
st.markdown(f"""
<div class="container-fluid">
<div class="row align-items-start">
<div class="col-md-12 col-sm-12">
<br>
<span>
{context}
[<b>Score: </b>{score}]
</span>
<br>
<b>From <a href="{link}">{title}</a></b>
</div>
</div>
</div>
""", unsafe_allow_html=True)
html(f"""
<div
class="scite-badge"
data-doi="{supporting}"
data-layout="horizontal"
data-show-zero="false"
data-show-labels="false"
data-tally-show="true"
/>
<script
async
type="application/javascript"
src="https://cdn.scite.ai/badge/scite-badge-latest.min.js">
</script>
""", width=None, height=42, scrolling=False)
st.title("Scientific Question Answering with Citations")
st.write("""
Ask a scientific question and get an answer drawn from [scite.ai](https://scite.ai) corpus of over 1.1bn citation statements.
Answers are linked to source documents containing citations where users can explore further evidence from scientific literature for the answer.
For example try: Are tanning beds safe to use? Does size of venture capital fund correlate with returns?
""")
st.markdown("""
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous">
""", unsafe_allow_html=True)
with st.expander("Settings (strictness, context limit, top hits)"):
strict_mode = st.radio(
"Query mode? Strict means all words must match in source snippet. Lenient means only some words must match.",
('lenient', 'strict'))
use_reranking = st.radio(
"Use Reranking? Reranking will rerank the top hits using semantic similarity of document and query.",
('yes', 'no'))
use_query_exp = st.radio(
"(Experimental) use query expansion? Right now it just recommends queries",
('yes', 'no'))
top_hits_limit = st.slider('Top hits? How many documents to use for reranking. Larger is slower but higher quality', 10, 300, 200 if torch.cuda.is_available() else 100)
context_lim = st.slider('Context limit? How many documents to use for answering from. Larger is slower but higher quality', 10, 300, 25 if torch.cuda.is_available() else 10)
def paraphrase(text, max_length=128):
input_ids = queryexp_tokenizer.encode(text, return_tensors="pt", add_special_tokens=True)
generated_ids = queryexp_model.generate(input_ids=input_ids, num_return_sequences=5, num_beams=5, max_length=max_length)
queries = set([queryexp_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids])
preds = '\n * '.join(queries)
return preds
def run_query(query):
if use_query_exp == 'yes':
query_exp = paraphrase(f"question2question: {query}")
st.markdown(f"""
If you are not getting good results try one of:
* {query_exp}
""")
limit = top_hits_limit or 100
context_limit = context_lim or 10
contexts, orig_docs = search(query, limit=limit, strict=strict_mode == 'strict')
if len(contexts) == 0 or not ''.join(contexts).strip():
return st.markdown("""
<div class="container-fluid">
<div class="row align-items-start">
<div class="col-md-12 col-sm-12">
Sorry... no results for that question! Try another...
</div>
</div>
</div>
""", unsafe_allow_html=True)
if use_reranking == 'yes':
sentence_pairs = [[query, context] for context in contexts]
scores = reranker.predict(sentence_pairs, batch_size=limit, show_progress_bar=False)
hits = {contexts[idx]: scores[idx] for idx in range(len(scores))}
sorted_contexts = [k for k,v in sorted(hits.items(), key=lambda x: x[0], reverse=True)]
context = '\n'.join(sorted_contexts[:context_limit])
else:
context = '\n'.join(contexts[:context_limit])
results = []
model_results = qa_model(question=query, context=context, top_k=10)
for result in model_results:
support = find_source(result['answer'], orig_docs)
if not support:
continue
results.append({
"answer": support['text'],
"title": support['source_title'],
"link": support['source_link'],
"context": support['citation_statement'],
"score": result['score'],
"doi": support["supporting"]
})
sorted_result = sorted(results, key=lambda x: x['score'], reverse=True)
sorted_result = list({
result['context']: result for result in sorted_result
}.values())
sorted_result = sorted(
sorted_result, key=lambda x: x['score'], reverse=True)
for r in sorted_result:
answer = r["answer"]
ctx = remove_html(r["context"]).replace(answer, f"<mark>{answer}</mark>").replace(
'<cite', '<a').replace('</cite', '</a').replace('data-doi="', 'href="https://scite.ai/reports/')
title = r.get("title", '').replace("_", " ")
score = round(r["score"], 4)
card(title, ctx, score, r['link'], r['doi'])
query = st.text_input("Ask scientific literature a question", "")
if query != "":
with st.spinner('Loading...'):
run_query(query)
|