Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import pipeline, AutoTokenizer, AutoModelWithLMHead | |
import requests | |
from bs4 import BeautifulSoup | |
from nltk.corpus import stopwords | |
import nltk | |
import string | |
from streamlit.components.v1 import html | |
from sentence_transformers.cross_encoder import CrossEncoder as CE | |
import numpy as np | |
from typing import List, Tuple | |
import torch | |
class CrossEncoder: | |
def __init__(self, model_path: str, **kwargs): | |
self.model = CE(model_path, **kwargs) | |
def predict(self, sentences: List[Tuple[str,str]], batch_size: int = 32, show_progress_bar: bool = True) -> List[float]: | |
return self.model.predict( | |
sentences=sentences, | |
batch_size=batch_size, | |
show_progress_bar=show_progress_bar) | |
SCITE_API_KEY = st.secrets["SCITE_API_KEY"] | |
def remove_html(x): | |
soup = BeautifulSoup(x, 'html.parser') | |
text = soup.get_text() | |
return text | |
def search(term, limit=10, clean=True, strict=True): | |
term = clean_query(term, clean=clean, strict=strict) | |
# heuristic, 2 searches strict and not? and then merge? | |
search = f"https://api.scite.ai/search?mode=citations&term={term}&limit={limit}&offset=0&user_slug=domenic-rosati-keW5&compute_aggregations=false" | |
req = requests.get( | |
search, | |
headers={ | |
'Authorization': f'Bearer {SCITE_API_KEY}' | |
} | |
) | |
try: | |
req.json() | |
except: | |
return [], [] | |
return ( | |
[remove_html('\n'.join([cite['snippet'] for cite in doc['citations']])) for doc in req.json()['hits']], | |
[(doc['doi'], doc['citations'], doc['title']) | |
for doc in req.json()['hits']] | |
) | |
def find_source(text, docs): | |
for doc in docs: | |
if text in remove_html(doc[1][0]['snippet']): | |
new_text = text | |
for snip in remove_html(doc[1][0]['snippet']).split('.'): | |
if text in snip: | |
new_text = snip | |
return { | |
'citation_statement': doc[1][0]['snippet'].replace('<strong class="highlight">', '').replace('</strong>', ''), | |
'text': new_text, | |
'from': doc[1][0]['source'], | |
'supporting': doc[1][0]['target'], | |
'source_title': doc[2], | |
'source_link': f"https://scite.ai/reports/{doc[0]}" | |
} | |
return None | |
def init_models(): | |
nltk.download('stopwords') | |
stop = set(stopwords.words('english') + list(string.punctuation)) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
question_answerer = pipeline( | |
"question-answering", model='sultan/BioM-ELECTRA-Large-SQuAD2-BioASQ8B', | |
device=device | |
) | |
reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', device=device) | |
queryexp_tokenizer = AutoTokenizer.from_pretrained("doc2query/all-with_prefix-t5-base-v1") | |
queryexp_model = AutoModelWithLMHead.from_pretrained("doc2query/all-with_prefix-t5-base-v1") | |
return question_answerer, reranker, stop, device, queryexp_model, queryexp_tokenizer | |
qa_model, reranker, stop, device, queryexp_model, queryexp_tokenizer = init_models() | |
def clean_query(query, strict=True, clean=True): | |
operator = ' ' | |
if strict: | |
operator = ' AND ' | |
query = operator.join( | |
[i for i in query.lower().split(' ') if clean and i not in stop]) | |
if clean: | |
query = query.translate(str.maketrans('', '', string.punctuation)) | |
return query | |
def card(title, context, score, link, supporting): | |
st.markdown(f""" | |
<div class="container-fluid"> | |
<div class="row align-items-start"> | |
<div class="col-md-12 col-sm-12"> | |
<br> | |
<span> | |
{context} | |
[<b>Score: </b>{score}] | |
</span> | |
<br> | |
<b>From <a href="{link}">{title}</a></b> | |
</div> | |
</div> | |
</div> | |
""", unsafe_allow_html=True) | |
html(f""" | |
<div | |
class="scite-badge" | |
data-doi="{supporting}" | |
data-layout="horizontal" | |
data-show-zero="false" | |
data-show-labels="false" | |
data-tally-show="true" | |
/> | |
<script | |
async | |
type="application/javascript" | |
src="https://cdn.scite.ai/badge/scite-badge-latest.min.js"> | |
</script> | |
""", width=None, height=42, scrolling=False) | |
st.title("Scientific Question Answering with Citations") | |
st.write(""" | |
Ask a scientific question and get an answer drawn from [scite.ai](https://scite.ai) corpus of over 1.1bn citation statements. | |
Answers are linked to source documents containing citations where users can explore further evidence from scientific literature for the answer. For example try: | |
Are tanning beds safe to use? Does size of venture capital fund correlate with returns? | |
""") | |
st.markdown(""" | |
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous"> | |
""", unsafe_allow_html=True) | |
with st.expander("Settings (strictness, context limit, top hits)"): | |
strict_mode = st.radio( | |
"Query mode? Strict means all words must match in source snippet. Lenient means only some words must match.", | |
('strict', 'lenient')) | |
use_reranking = st.radio( | |
"Use Reranking? Reranking will rerank the top hits using semantic similarity of document and query.", | |
('yes', 'no')) | |
use_query_exp = st.radio( | |
"(Experimental) use query expansion? Right now it just recommends queries", | |
('yes', 'no')) | |
top_hits_limit = st.slider('Top hits? How many documents to use for reranking. Larger is slower but higher quality', 10, 300, 200 if torch.cuda.is_available() else 100) | |
context_lim = st.slider('Context limit? How many documents to use for answering from. Larger is slower but higher quality', 10, 300, 25 if torch.cuda.is_available() else 10) | |
def paraphrase(text, max_length=128): | |
input_ids = queryexp_tokenizer.encode(text, return_tensors="pt", add_special_tokens=True) | |
generated_ids = queryexp_model.generate(input_ids=input_ids, num_return_sequences=5, num_beams=5, max_length=max_length) | |
preds = '\n'.join([queryexp_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids]) | |
return preds | |
def run_query(query): | |
if use_query_exp == 'yes': | |
query_exp = paraphrase(f"question2question: {query}") | |
st.markdown(f""" | |
If you are not getting good results try one of: | |
{query_exp} | |
""") | |
limit = top_hits_limit or 100 | |
context_limit = context_lim or 10 | |
contexts, orig_docs = search(query, limit=limit, strict=strict_mode == 'strict') | |
if len(contexts) == 0 or not ''.join(contexts).strip(): | |
return st.markdown(""" | |
<div class="container-fluid"> | |
<div class="row align-items-start"> | |
<div class="col-md-12 col-sm-12"> | |
Sorry... no results for that question! Try another... | |
</div> | |
</div> | |
</div> | |
""", unsafe_allow_html=True) | |
if use_reranking == 'yes': | |
sentence_pairs = [[query, context] for context in contexts] | |
scores = reranker.predict(sentence_pairs, batch_size=limit, show_progress_bar=False) | |
hits = {contexts[idx]: scores[idx] for idx in range(len(scores))} | |
sorted_contexts = [k for k,v in sorted(hits.items(), key=lambda x: x[0], reverse=True)] | |
context = '\n'.join(sorted_contexts[:context_limit]) | |
else: | |
context = '\n'.join(contexts[:context_limit]) | |
results = [] | |
model_results = qa_model(question=query, context=context, top_k=10) | |
for result in model_results: | |
support = find_source(result['answer'], orig_docs) | |
if not support: | |
continue | |
results.append({ | |
"answer": support['text'], | |
"title": support['source_title'], | |
"link": support['source_link'], | |
"context": support['citation_statement'], | |
"score": result['score'], | |
"doi": support["supporting"] | |
}) | |
sorted_result = sorted(results, key=lambda x: x['score'], reverse=True) | |
sorted_result = list({ | |
result['context']: result for result in sorted_result | |
}.values()) | |
sorted_result = sorted( | |
sorted_result, key=lambda x: x['score'], reverse=True) | |
for r in sorted_result: | |
answer = r["answer"] | |
ctx = remove_html(r["context"]).replace(answer, f"<mark>{answer}</mark>").replace( | |
'<cite', '<a').replace('</cite', '</a').replace('data-doi="', 'href="https://scite.ai/reports/') | |
title = r.get("title", '').replace("_", " ") | |
score = round(r["score"], 4) | |
card(title, ctx, score, r['link'], r['doi']) | |
query = st.text_input("Ask scientific literature a question", "") | |
if query != "": | |
with st.spinner('Loading...'): | |
run_query(query) | |