scite-qa-demo / app.py
domenicrosati's picture
add bootstrap styling back in
2d1b5a8
raw
history blame
17 kB
import streamlit as st
from transformers import pipeline, AutoTokenizer, LEDForConditionalGeneration
import requests
from bs4 import BeautifulSoup
import nltk
import string
from streamlit.components.v1 import html
from sentence_transformers.cross_encoder import CrossEncoder as CE
import re
from typing import List, Tuple
import torch
SCITE_API_KEY = st.secrets["SCITE_API_KEY"]
# class CrossEncoder:
# def __init__(self, model_path: str, **kwargs):
# self.model = CE(model_path, **kwargs)
# def predict(self, sentences: List[Tuple[str,str]], batch_size: int = 32, show_progress_bar: bool = True) -> List[float]:
# return self.model.predict(
# sentences=sentences,
# batch_size=batch_size,
# show_progress_bar=show_progress_bar)
def remove_html(x):
soup = BeautifulSoup(x, 'html.parser')
text = soup.get_text()
return text.strip()
# 4 searches: strict y/n, supported y/n
# deduplicate
# search per query
# options are abstract search
# all search
def search(term, limit=10, clean=True, strict=True, all_mode=True, abstracts=True, abstract_only=False):
term = clean_query(term, clean=clean, strict=strict)
# heuristic, 2 searches strict and not? and then merge?
# https://api.scite.ai/search?mode=all&term=unit%20testing%20software&limit=10&date_from=2000&date_to=2022&offset=0&supporting_from=1&contrasting_from=0&contrasting_to=0&user_slug=domenic-rosati-keW5&compute_aggregations=true
contexts, docs = [], []
if not abstract_only:
mode = 'all'
if not all_mode:
mode = 'citations'
search = f"https://api.scite.ai/search?mode={mode}&term={term}&limit={limit}&offset=0&user_slug=domenic-rosati-keW5&compute_aggregations=false"
req = requests.get(
search,
headers={
'Authorization': f'Bearer {SCITE_API_KEY}'
}
)
try:
req.json()
except:
pass
contexts += [remove_html('\n'.join([cite['snippet'] for cite in doc['citations'] if cite['lang'] == 'en'])) for doc in req.json()['hits']]
docs += [(doc['doi'], doc['citations'], doc['title'], doc['abstract'] or '')
for doc in req.json()['hits']]
if abstracts or abstract_only:
search = f"https://api.scite.ai/search?mode=papers&abstract={term}&limit={limit}&offset=0&user_slug=domenic-rosati-keW5&compute_aggregations=false"
req = requests.get(
search,
headers={
'Authorization': f'Bearer {SCITE_API_KEY}'
}
)
try:
req.json()
contexts += [remove_html(doc['abstract'] or '') for doc in req.json()['hits']]
docs += [(doc['doi'], doc['citations'], doc['title'], doc['abstract'] or '')
for doc in req.json()['hits']]
except:
pass
return (
contexts,
docs
)
def find_source(text, docs, matched):
for doc in docs:
for snippet in doc[1]:
if text in remove_html(snippet.get('snippet', '')):
if matched and remove_html(snippet.get('snippet', '')).strip() != matched.strip():
continue
new_text = text
for sent in nltk.sent_tokenize(remove_html(snippet.get('snippet', ''))):
if text in sent:
new_text = sent
return {
'citation_statement': snippet['snippet'].replace('<strong class="highlight">', '').replace('</strong>', ''),
'text': new_text,
'from': snippet['source'],
'supporting': snippet['target'],
'source_title': remove_html(doc[2] or ''),
'source_link': f"https://scite.ai/reports/{doc[0]}"
}
if text in remove_html(doc[3]):
if matched and remove_html(doc[3]).strip() != matched.strip():
continue
new_text = text
sent_loc = None
sents = nltk.sent_tokenize(remove_html(doc[3]))
for i, sent in enumerate(sents):
if text in sent:
new_text = sent
sent_loc = i
context = remove_html(doc[3]).replace('<strong class="highlight">', '').replace('</strong>', '')
if sent_loc:
context_len = 3
sent_beg = sent_loc - context_len
if sent_beg <= 0: sent_beg = 0
sent_end = sent_loc + context_len
if sent_end >= len(sents):
sent_end = len(sents)
context = ''.join(sents[sent_beg:sent_end])
return {
'citation_statement': context,
'text': new_text,
'from': doc[0],
'supporting': doc[0],
'source_title': remove_html(doc[2] or ''),
'source_link': f"https://scite.ai/reports/{doc[0]}"
}
return None
# @st.experimental_singleton
# def init_models():
# nltk.download('stopwords')
# nltk.download('punkt')
# from nltk.corpus import stopwords
# stop = set(stopwords.words('english') + list(string.punctuation))
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# question_answerer = pipeline(
# "question-answering", model='nlpconnect/roberta-base-squad2-nq',
# device=0 if torch.cuda.is_available() else -1, handle_impossible_answer=False,
# )
# reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', device=device)
# # queryexp_tokenizer = AutoTokenizer.from_pretrained("doc2query/all-with_prefix-t5-base-v1")
# # queryexp_model = AutoModelWithLMHead.from_pretrained("doc2query/all-with_prefix-t5-base-v1")
# return question_answerer, reranker, stop, device
# qa_model, reranker, stop, device = init_models() # queryexp_model, queryexp_tokenizer
def clean_query(query, strict=True, clean=True):
operator = ' '
if strict:
operator = ' AND '
query = operator.join(
[i for i in query.lower().split(' ') if clean and i not in stop])
if clean:
query = query.translate(str.maketrans('', '', string.punctuation))
return query
def card(title, context, score, link, supporting):
st.markdown(f"""
<div class="container-fluid">
<div class="row align-items-start">
<div class="col-md-12 col-sm-12">
<br>
<span>
{context}
[<b>Confidence: </b>{score}%]
</span>
<br>
<b>From <a href="{link}">{title}</a></b>
</div>
</div>
</div>
""", unsafe_allow_html=True)
html(f"""
<div
class="scite-badge"
data-doi="{supporting}"
data-layout="horizontal"
data-show-zero="false"
data-show-labels="false"
data-tally-show="true"
/>
<script
async
type="application/javascript"
src="https://cdn.scite.ai/badge/scite-badge-latest.min.js">
</script>
""", width=None, height=42, scrolling=False)
st.title("Scientific Question Answering with Citations")
st.write("""
Ask a scientific question and get an answer drawn from [scite.ai](https://scite.ai) corpus of over 1.1bn citation statements.
Answers are linked to source documents containing citations where users can explore further evidence from scientific literature for the answer.
For example try: Do tanning beds cause cancer?
""")
st.markdown("""
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous">
""", unsafe_allow_html=True)
# with st.expander("Settings (strictness, context limit, top hits)"):
# concat_passages = st.radio(
# "Concatenate passages as one long context?",
# ('yes', 'no'))
# present_impossible = st.radio(
# "Present impossible answers? (if the model thinks its impossible to answer should it still try?)",
# ('yes', 'no'))
# support_all = st.radio(
# "Use abstracts and titles as a ranking signal (if the words are matched in the abstract then the document is more relevant)?",
# ('no', 'yes'))
# support_abstracts = st.radio(
# "Use abstracts as a source document?",
# ('yes', 'no', 'abstract only'))
# strict_lenient_mix = st.radio(
# "Type of strict+lenient combination: Fallback or Mix? If fallback, strict is run first then if the results are less than context_lim we also search lenient. Mix will search them both and let reranking sort em out",
# ('mix', 'fallback'))
# confidence_threshold = st.slider('Confidence threshold for answering questions? This number represents how confident the model should be in the answers it gives. The number is out of 100%', 0, 100, 1)
# use_reranking = st.radio(
# "Use Reranking? Reranking will rerank the top hits using semantic similarity of document and query.",
# ('yes', 'no'))
# top_hits_limit = st.slider('Top hits? How many documents to use for reranking. Larger is slower but higher quality', 10, 300, 100)
# context_lim = st.slider('Context limit? How many documents to use for answering from. Larger is slower but higher quality', 10, 300, 25)
# def paraphrase(text, max_length=128):
# input_ids = queryexp_tokenizer.encode(text, return_tensors="pt", add_special_tokens=True)
# generated_ids = queryexp_model.generate(input_ids=input_ids, num_return_sequences=suggested_queries or 5, num_beams=suggested_queries or 5, max_length=max_length)
# queries = set([queryexp_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids])
# preds = '\n * '.join(queries)
# return preds
def group_results_by_context(results):
result_groups = {}
for result in results:
if result['context'] not in result_groups:
result_groups[result['context']] = result
result_groups[result['context']]['texts'] = []
result_groups[result['context']]['texts'].append(
result['answer']
)
if result['score'] > result_groups[result['context']]['score']:
result_groups[result['context']]['score'] = result['score']
return list(result_groups.values())
def matched_context(start_i, end_i, contexts_string, seperator='---'):
# find seperators to identify start and end
doc_starts = [0]
for match in re.finditer(seperator, contexts_string):
doc_starts.append(match.end())
for i in range(len(doc_starts)):
if i == len(doc_starts) - 1:
if start_i >= doc_starts[i]:
return contexts_string[doc_starts[i]:len(contexts_string)].replace(seperator, '')
if start_i >= doc_starts[i] and end_i <= doc_starts[i+1]:
return contexts_string[doc_starts[i]:doc_starts[i+1]].replace(seperator, '')
return None
# def run_query_full(query, progress_bar):
# # if use_query_exp == 'yes':
# # query_exp = paraphrase(f"question2question: {query}")
# # st.markdown(f"""
# # If you are not getting good results try one of:
# # * {query_exp}
# # """)
# # could also try fallback if there are no good answers by score...
# limit = top_hits_limit or 100
# context_limit = context_lim or 10
# contexts_strict, orig_docs_strict = search(query, limit=limit, strict=True, all_mode=support_all == 'yes', abstracts= support_abstracts == 'yes', abstract_only=support_abstracts == 'abstract only')
# if strict_lenient_mix == 'fallback' and len(contexts_strict) < context_limit:
# contexts_lenient, orig_docs_lenient = search(query, limit=limit, strict=False, all_mode=support_all == 'yes', abstracts= support_abstracts == 'yes', abstract_only= support_abstracts == 'abstract only')
# contexts = list(
# set(contexts_strict + contexts_lenient)
# )
# orig_docs = orig_docs_strict + orig_docs_lenient
# elif strict_lenient_mix == 'mix':
# contexts_lenient, orig_docs_lenient = search(query, limit=limit, strict=False)
# contexts = list(
# set(contexts_strict + contexts_lenient)
# )
# orig_docs = orig_docs_strict + orig_docs_lenient
# else:
# contexts = list(
# set(contexts_strict)
# )
# orig_docs = orig_docs_strict
# progress_bar.progress(25)
# if len(contexts) == 0 or not ''.join(contexts).strip():
# return st.markdown("""
# <div class="container-fluid">
# <div class="row align-items-start">
# <div class="col-md-12 col-sm-12">
# Sorry... no results for that question! Try another...
# </div>
# </div>
# </div>
# """, unsafe_allow_html=True)
# if use_reranking == 'yes':
# sentence_pairs = [[query, context] for context in contexts]
# scores = reranker.predict(sentence_pairs, batch_size=len(sentence_pairs), show_progress_bar=False)
# hits = {contexts[idx]: scores[idx] for idx in range(len(scores))}
# sorted_contexts = [k for k,v in sorted(hits.items(), key=lambda x: x[0], reverse=True)]
# contexts = sorted_contexts[:context_limit]
# else:
# contexts = contexts[:context_limit]
# progress_bar.progress(50)
# if concat_passages == 'yes':
# context = '\n---'.join(contexts)
# model_results = qa_model(question=query, context=context, top_k=10, doc_stride=512 // 2, max_answer_len=128, max_seq_len=512, handle_impossible_answer=present_impossible=='yes')
# else:
# context = ['\n---\n'+ctx for ctx in contexts]
# model_results = qa_model(question=[query]*len(contexts), context=context, handle_impossible_answer=present_impossible=='yes')
# results = []
# progress_bar.progress(75)
# for i, result in enumerate(model_results):
# if concat_passages == 'yes':
# matched = matched_context(result['start'], result['end'], context)
# else:
# matched = matched_context(result['start'], result['end'], context[i])
# support = find_source(result['answer'], orig_docs, matched)
# if not support:
# continue
# results.append({
# "answer": support['text'],
# "title": support['source_title'],
# "link": support['source_link'],
# "context": support['citation_statement'],
# "score": result['score'],
# "doi": support["supporting"]
# })
# grouped_results = group_results_by_context(results)
# sorted_result = sorted(grouped_results, key=lambda x: x['score'], reverse=True)
# if confidence_threshold == 0:
# threshold = 0
# else:
# threshold = (confidence_threshold or 10) / 100
# sorted_result = list(filter(
# lambda x: x['score'] > threshold,
# sorted_result
# ))
# progress_bar.progress(100)
# for r in sorted_result:
# ctx = remove_html(r["context"])
# for answer in r['texts']:
# ctx = ctx.replace(answer.strip(), f"<mark>{answer.strip()}</mark>")
# # .replace( '<cite', '<a').replace('</cite', '</a').replace('data-doi="', 'href="https://scite.ai/reports/')
# title = r.get("title", '')
# score = round(round(r["score"], 4) * 100, 2)
# card(title, ctx, score, r['link'], r['doi'])
def run_query(query):
api_location = 'http://74.82.31.93'
resp_raw = requests.get(
f'{api_location}/question-answer?query={query}'
)
try:
resp = resp_raw.json()
except:
resp = {'results': []}
if len(resp.get('results', [])) == 0:
return st.markdown("""
<div class="container-fluid">
<div class="row align-items-start">
<div class="col-md-12 col-sm-12">
Sorry... no results for that question! Try another...
</div>
</div>
</div>
""", unsafe_allow_html=True)
for r in resp['results']:
ctx = remove_html(r["context"])
for answer in r['texts']:
ctx = ctx.replace(answer.strip(), f"<mark>{answer.strip()}</mark>")
# .replace( '<cite', '<a').replace('</cite', '</a').replace('data-doi="', 'href="https://scite.ai/reports/')
title = r.get("title", '')
score = round(round(r["score"], 4) * 100, 2)
card(title, ctx, score, r['link'], r['doi'])
query = st.text_input("Ask scientific literature a question", "")
if query != "":
with st.spinner('Loading...'):
run_query(query)