Spaces:
Runtime error
Runtime error
from typing import Any, Dict, List, Optional, Tuple, Union | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from transformers import AutoConfig, AutoModel, BertPreTrainedModel | |
from transformers.modeling_outputs import ModelOutput | |
import torch | |
def get_range_vector(size: int, device: int) -> torch.Tensor: | |
""" | |
Returns a range vector with the desired size, starting at 0. The CUDA implementation | |
is meant to avoid copy data from CPU to GPU. | |
""" | |
return torch.arange(0, size, dtype=torch.long, device=device) | |
class Seq2LabelsOutput(ModelOutput): | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
detect_logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
max_error_probability: Optional[torch.FloatTensor] = None | |
class Seq2LabelsModel(BertPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.num_detect_classes = config.num_detect_classes | |
self.label_smoothing = config.label_smoothing | |
if config.load_pretrained: | |
self.bert = AutoModel.from_pretrained(config.pretrained_name_or_path) | |
bert_config = self.bert.config | |
else: | |
bert_config = AutoConfig.from_pretrained(config.pretrained_name_or_path) | |
self.bert = AutoModel.from_config(bert_config) | |
if config.special_tokens_fix: | |
try: | |
vocab_size = self.bert.embeddings.word_embeddings.num_embeddings | |
except AttributeError: | |
# reserve more space | |
vocab_size = self.bert.word_embedding.num_embeddings + 5 | |
self.bert.resize_token_embeddings(vocab_size + 1) | |
predictor_dropout = config.predictor_dropout if config.predictor_dropout is not None else 0.0 | |
self.dropout = nn.Dropout(predictor_dropout) | |
self.classifier = nn.Linear(bert_config.hidden_size, config.vocab_size) | |
self.detector = nn.Linear(bert_config.hidden_size, config.num_detect_classes) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
input_offsets: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
d_tags: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], Seq2LabelsOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
if input_offsets is not None: | |
# offsets is (batch_size, d1, ..., dn, orig_sequence_length) | |
range_vector = get_range_vector(input_offsets.size(0), device=sequence_output.device).unsqueeze(1) | |
# selected embeddings is also (batch_size * d1 * ... * dn, orig_sequence_length) | |
sequence_output = sequence_output[range_vector, input_offsets] | |
logits = self.classifier(self.dropout(sequence_output)) | |
logits_d = self.detector(sequence_output) | |
loss = None | |
if labels is not None and d_tags is not None: | |
loss_labels_fct = CrossEntropyLoss(label_smoothing=self.label_smoothing) | |
loss_d_fct = CrossEntropyLoss() | |
loss_labels = loss_labels_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
loss_d = loss_d_fct(logits_d.view(-1, self.num_detect_classes), d_tags.view(-1)) | |
loss = loss_labels + loss_d | |
if not return_dict: | |
output = (logits, logits_d) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return Seq2LabelsOutput( | |
loss=loss, | |
logits=logits, | |
detect_logits=logits_d, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
max_error_probability=torch.ones(logits.size(0)), | |
) | |