Spaces:
Runtime error
Runtime error
import torch | |
import torchaudio | |
from einops import rearrange | |
from stable_audio_tools import get_pretrained_model | |
from stable_audio_tools.inference.generation import generate_diffusion_cond | |
from pydub import AudioSegment | |
import re | |
import os | |
from datetime import datetime | |
import gradio as gr | |
# Define the function to generate audio based on a prompt | |
def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Download model | |
model, model_config = get_pretrained_model("audo/stable-audio-open-1.0") | |
sample_rate = model_config["sample_rate"] | |
sample_size = model_config["sample_size"] | |
model = model.to(device) | |
# Print model data type before conversion | |
print("Model data type before conversion:", next(model.parameters()).dtype) | |
# Convert model to float16 if model_half is True | |
if model_half: | |
model = model.to(torch.float16) | |
# Print model data type after conversion | |
print("Model data type after conversion:", next(model.parameters()).dtype) | |
# Set up text and timing conditioning | |
conditioning = [{ | |
"prompt": prompt, | |
"seconds_start": 0, | |
"seconds_total": generation_time | |
}] | |
# Generate stereo audio | |
output = generate_diffusion_cond( | |
model, | |
steps=steps, | |
cfg_scale=cfg_scale, | |
conditioning=conditioning, | |
sample_size=sample_size, | |
sigma_min=sigma_min, | |
sigma_max=sigma_max, | |
sampler_type=sampler_type, | |
device=device, | |
seed=seed | |
) | |
# Print output data type | |
print("Output data type:", output.dtype) | |
# Rearrange audio batch to a single sequence | |
output = rearrange(output, "b d n -> d (b n)") | |
# Peak normalize, clip, and convert to int16 directly if model_half is used | |
output = output.div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767) | |
if model_half: | |
output = output.to(torch.int16).cpu() | |
else: | |
output = output.to(torch.float32).to(torch.int16).cpu() | |
torchaudio.save("temp_output.wav", output, sample_rate) | |
# Convert to MP3 format using pydub | |
audio = AudioSegment.from_wav("temp_output.wav") | |
# Create Output folder and dated subfolder if they do not exist | |
output_folder = "Output" | |
date_folder = datetime.now().strftime("%Y-%m-%d") | |
save_path = os.path.join(output_folder, date_folder) | |
os.makedirs(save_path, exist_ok=True) | |
# Generate a filename based on the prompt | |
filename = re.sub(r'\W+', '_', prompt) + ".mp3" # Replace non-alphanumeric characters with underscores | |
full_path = os.path.join(save_path, filename) | |
# Ensure the filename is unique by appending a number if the file already exists | |
base_filename = filename | |
counter = 1 | |
while os.path.exists(full_path): | |
filename = f"{base_filename[:-4]}_{counter}.mp3" | |
full_path = os.path.join(save_path, filename) | |
counter += 1 | |
# Export the audio to MP3 format | |
audio.export(full_path, format="mp3") | |
return full_path | |
def audio_generator(prompt, sampler_type, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, model_half): | |
try: | |
print("Generating audio with parameters:") | |
print("Prompt:", prompt) | |
print("Sampler Type:", sampler_type) | |
print("Steps:", steps) | |
print("CFG Scale:", cfg_scale) | |
print("Sigma Min:", sigma_min) | |
print("Sigma Max:", sigma_max) | |
print("Generation Time:", generation_time) | |
print("Seed:", seed) | |
print("Model Half Precision:", model_half) | |
filename = generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half) | |
return gr.Audio(filename), f"Generated: {filename}" | |
except Exception as e: | |
return str(e) | |
# Create Gradio interface | |
prompt_textbox = gr.Textbox(lines=5, label="Prompt") | |
sampler_dropdown = gr.Dropdown( | |
label="Sampler Type", | |
choices=[ | |
"dpmpp-3m-sde", | |
"dpmpp-2m-sde", | |
"k-heun", | |
"k-lms", | |
"k-dpmpp-2s-ancestral", | |
"k-dpm-2", | |
"k-dpm-fast" | |
], | |
value="dpmpp-3m-sde" | |
) | |
steps_slider = gr.Slider(minimum=0, maximum=200, label="Steps", step=1, value=100) | |
cfg_scale_slider = gr.Slider(minimum=0, maximum=15, label="CFG Scale", step=0.1, value=7) | |
sigma_min_slider = gr.Slider(minimum=0, maximum=50, label="Sigma Min", step=0.1, value=0.3) | |
sigma_max_slider = gr.Slider(minimum=0, maximum=1000, label="Sigma Max", step=0.1, value=500) | |
generation_time_slider = gr.Slider(minimum=0, maximum=47, label="Generation Time (seconds)", step=1, value=47) | |
seed_slider = gr.Slider(minimum=-1, maximum=999999, label="Seed", step=1, value=123456) | |
model_half_checkbox = gr.Checkbox(label="Low VRAM (float16)", value=False) | |
output_textbox = gr.Textbox(label="Output") | |
title = "ππ StableAudioWebUI ππ" | |
description = "[Github Repository](https://github.com/Saganaki22/StableAudioWebUI)" | |
gr.Interface( | |
audio_generator, | |
[prompt_textbox, sampler_dropdown, steps_slider, cfg_scale_slider, sigma_min_slider, sigma_max_slider, generation_time_slider, seed_slider, model_half_checkbox], | |
[gr.Audio(), output_textbox], | |
title=title, | |
description=description | |
).launch() | |