File size: 99,385 Bytes
577cd8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532

#This will download the booknlp files using my huggingface backup     
import download_missing_booknlp_models 


# @title Default title text
#this is code that will be used to turn numbers like 1,000 and in a txt file into 1000 go then booknlp doesnt make it weird and then when the numbers are generated it comes out fine
import re

def process_large_numbers_in_txt(file_path):
    # Read the contents of the file
    with open(file_path, 'r') as file:
        content = file.read()

    # Regular expression to match numbers with commas
    pattern = r'\b\d{1,3}(,\d{3})+\b'

    # Remove commas in numerical sequences
    modified_content = re.sub(pattern, lambda m: m.group().replace(',', ''), content)

    # Write the modified content back to the file
    with open(file_path, 'w') as file:
        file.write(modified_content)

# Usage example
#file_path = 'test_1.txt'  # Replace with your actual file path
#process_large_numbers_in_txt(file_path)


#this code here will remove any blank text rows from the csv file
import pandas as pd

def remove_empty_text_rows(csv_file):
    # Read the CSV file
    data = pd.read_csv(csv_file)

    # Remove rows where the 'Text' column is empty or NaN
    data = data[data['Text'].notna() & (data['Text'] != '')]

    # Write the modified DataFrame back to the CSV file
    data.to_csv(csv_file, index=False)

    print(f"Rows with empty 'Text' column have been removed from {csv_file}")

# Example usage
#csv_file = 'path_to_your_csv_file.csv'  # Replace with your CSV file path
#remove_empty_text_rows(csv_file)



#this code here will split book.csv file by the custom weird chapter deliminator for amachines to see
import pandas as pd

def process_and_split_csv(file_path, split_string):
    def split_text(text, split_string, original_row):
        # Split the text at the specified string and find the index of the split
        split_index = text.find(split_string)
        parts = text.split(split_string)
        new_rows = []
        start_location = original_row['Start Location']

        for index, part in enumerate(parts):
            new_row = original_row.copy()
            if index == 0:
                new_row['Text'] = part
                new_row['End Location'] = start_location + split_index
            else:
                new_row['Text'] = split_string + part
                new_row['Start Location'] = start_location + split_index
                new_row['End Location'] = start_location + split_index + len(split_string) + len(part)
                split_index += len(split_string) + len(part)  # Update for the next part

            new_rows.append(new_row)

        return new_rows

    def process_csv(df, split_string):
        new_rows = []
        for _, row in df.iterrows():
            text = row['Text']
            if isinstance(text, str) and split_string in text:
                new_rows.extend(split_text(text, split_string, row))
            else:
                new_rows.append(row)
        return pd.DataFrame(new_rows)

    # Read the CSV file
    df = pd.read_csv(file_path)

    # Process the DataFrame
    new_df = process_csv(df, split_string)

    # Write the modified DataFrame back to the CSV file
    new_df.to_csv(file_path, index=False)

# Example usage
#file_path = 'Working_files/Book/book.csv'
#split_string = 'NEWCHAPTERABC'
#process_and_split_csv(file_path, split_string)





#this code right here isnt the book grabbing thing but its before to refrence in ordero to create the sepecial chapter labeled book thing with calibre idk some systems cant seem to get it so just in case but the next bit of code after this is the book grabbing code with booknlp 
import os
import subprocess
import ebooklib
from ebooklib import epub
from bs4 import BeautifulSoup
import re
import csv
import nltk
import shutil

# Only run the main script if Value is True
def create_chapter_labeled_book(ebook_file_path):
    # Function to ensure the existence of a directory
    def ensure_directory(directory_path):
        if not os.path.exists(directory_path):
            os.makedirs(directory_path)
            print(f"Created directory: {directory_path}")

    ensure_directory('Working_files/Book')

    def convert_to_epub(input_path, output_path):
        # Convert the ebook to EPUB format using Calibre's ebook-convert
        try:
            subprocess.run(['ebook-convert', input_path, output_path], check=True)
        except subprocess.CalledProcessError as e:
            print(f"An error occurred while converting the eBook: {e}")
            return False
        return True

    def save_chapters_as_text(epub_path):
        # Create the directory if it doesn't exist
        directory = "Working_files/temp_ebook"
        #Clean up the text chapter folders by wiping it before creating chapters for selected ebook.
        #Lazily done by just deleting the directly and everything in it.
        if os.path.exists(directory):
            shutil.rmtree(directory)
        ensure_directory(directory)

        # Open the EPUB file
        book = epub.read_epub(epub_path)

        previous_chapter_text = ''
        previous_filename = ''
        chapter_counter = 0

        # Iterate through the items in the EPUB file
        for item in book.get_items():
            if item.get_type() == ebooklib.ITEM_DOCUMENT:
                # Use BeautifulSoup to parse HTML content
                soup = BeautifulSoup(item.get_content(), 'html.parser')
                text = soup.get_text()

                # Check if the text is not empty
                if text.strip():
                    if len(text) < 2300 and previous_filename:
                        # Append text to the previous chapter if it's short
                        with open(previous_filename, 'a', encoding='utf-8') as file:
                            file.write('\n' + text)
                    else:
                        # Create a new chapter file and increment the counter
                        previous_filename = os.path.join(directory, f"chapter_{chapter_counter}.txt")
                        chapter_counter += 1
                        with open(previous_filename, 'w', encoding='utf-8') as file:
                            file.write(text)
                            print(f"Saved chapter: {previous_filename}")

    # Example usage
    input_ebook = ebook_file_path  # Replace with your eBook file path
    output_epub = 'Working_files/temp.epub'

    if os.path.exists(output_epub):
        os.remove(output_epub)
        print(f"File {output_epub} has been removed.")
    else:
        print(f"The file {output_epub} does not exist.")

    if convert_to_epub(input_ebook, output_epub):
        save_chapters_as_text(output_epub)

    # Download the necessary NLTK data (if not already present)
    nltk.download('punkt')
    """
    def process_chapter_files(folder_path, output_csv):
        with open(output_csv, 'w', newline='', encoding='utf-8') as csvfile:
            writer = csv.writer(csvfile)
            # Write the header row
            writer.writerow(['Text', 'Start Location', 'End Location', 'Is Quote', 'Speaker', 'Chapter'])

            # Process each chapter file
            chapter_files = sorted(os.listdir(folder_path), key=lambda x: int(x.split('_')[1].split('.')[0]))
            for filename in chapter_files:
                if filename.startswith('chapter_') and filename.endswith('.txt'):
                    chapter_number = int(filename.split('_')[1].split('.')[0])
                    file_path = os.path.join(folder_path, filename)

                    try:
                        with open(file_path, 'r', encoding='utf-8') as file:
                            text = file.read()
                            sentences = nltk.tokenize.sent_tokenize(text)
                            for sentence in sentences:
                                start_location = text.find(sentence)
                                end_location = start_location + len(sentence)
                                writer.writerow([sentence, start_location, end_location, 'True', 'Narrator', chapter_number])
                    except Exception as e:
                        print(f"Error processing file {filename}: {e}")
    """

    
    def process_chapter_files(folder_path, output_csv):
        with open(output_csv, 'w', newline='', encoding='utf-8') as csvfile:
            writer = csv.writer(csvfile)
            # Write the header row
            writer.writerow(['Text', 'Start Location', 'End Location', 'Is Quote', 'Speaker', 'Chapter'])

            # Process each chapter file
            chapter_files = sorted(os.listdir(folder_path), key=lambda x: int(x.split('_')[1].split('.')[0]))
            for filename in chapter_files:
                if filename.startswith('chapter_') and filename.endswith('.txt'):
                    chapter_number = int(filename.split('_')[1].split('.')[0])
                    file_path = os.path.join(folder_path, filename)

                    try:
                        with open(file_path, 'r', encoding='utf-8') as file:
                            text = file.read()
                            # Insert "NEWCHAPTERABC" at the beginning of each chapter's text
                            if text:
                                text = "NEWCHAPTERABC" + text
                            sentences = nltk.tokenize.sent_tokenize(text)
                            for sentence in sentences:
                                start_location = text.find(sentence)
                                end_location = start_location + len(sentence)
                                writer.writerow([sentence, start_location, end_location, 'True', 'Narrator', chapter_number])
                    except Exception as e:
                        print(f"Error processing file {filename}: {e}")

    # Example usage
    folder_path = "Working_files/temp_ebook"  # Replace with your folder path
    output_csv = 'Working_files/Book/Other_book.csv'
    process_chapter_files(folder_path, output_csv)

    def wipe_folder(folder_path):
        # Check if the folder exists
        if not os.path.exists(folder_path):
            print(f"The folder {folder_path} does not exist.")
            return

        # Iterate through all files in the folder
        for filename in os.listdir(folder_path):
            file_path = os.path.join(folder_path, filename)
            # Check if it's a file and not a directory
            if os.path.isfile(file_path):
                try:
                    os.remove(file_path)
                    print(f"Removed file: {file_path}")
                except Exception as e:
                    print(f"Failed to remove {file_path}. Reason: {e}")
            else:
                print(f"Skipping directory: {file_path}")

    # Example usage
    # folder_to_wipe = 'Working_files/temp_ebook'  # Replace with the path to your folder
    # wipe_folder(folder_to_wipe)

    def sort_key(filename):
        """Extract chapter number for sorting."""
        match = re.search(r'chapter_(\d+)\.txt', filename)
        return int(match.group(1)) if match else 0

    def combine_chapters(input_folder, output_file):
        # Create the output folder if it doesn't exist
        os.makedirs(os.path.dirname(output_file), exist_ok=True)

        # List all txt files and sort them by chapter number
        files = [f for f in os.listdir(input_folder) if f.endswith('.txt')]
        sorted_files = sorted(files, key=sort_key)

        with open(output_file, 'w') as outfile:
            for i, filename in enumerate(sorted_files):
                with open(os.path.join(input_folder, filename), 'r') as infile:
                    outfile.write(infile.read())
                    # Add the marker unless it's the last file
                    if i < len(sorted_files) - 1:
                        outfile.write("\nNEWCHAPTERABC\n")

    # Paths
    input_folder = 'Working_files/temp_ebook'
    output_file = 'Working_files/Book/Chapter_Book.txt'

    # Combine the chapters
    combine_chapters(input_folder, output_file)

    ensure_directory('Working_files/Book')

#create_chapter_labeled_book()
























#this is the Booknlp book grabber code
import os
import subprocess
import tkinter as tk
from tkinter import filedialog, messagebox
from epub2txt import epub2txt
from booknlp.booknlp import BookNLP
import nltk
import re
nltk.download('averaged_perceptron_tagger')

epub_file_path = ""
chapters = []
ebook_file_path = ""
input_file_is_txt = False
def convert_epub_and_extract_chapters(epub_path):
    # Regular expression to match the chapter lines in the output
    chapter_pattern = re.compile(r'Detected chapter: \* (.*)')

    # List to store the extracted chapter names
    chapter_names = []

    # Start the conversion process and capture the output
    process = subprocess.Popen(['ebook-convert', epub_path, '/dev/null'],
                               stdout=subprocess.PIPE, 
                               stderr=subprocess.STDOUT,
                               universal_newlines=True)

    # Read the output line by line
    for line in iter(process.stdout.readline, ''):
        print(line, end='')  # You can comment this out if you don't want to see the output
        match = chapter_pattern.search(line)
        if match:
            chapter_names.append(match.group(1))

    # Wait for the process to finish
    process.stdout.close()
    process.wait()

    return chapter_names

def calibre_installed():
    """Check if Calibre's ebook-convert tool is available."""
    try:
        subprocess.run(['ebook-convert', '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
        return True
    except FileNotFoundError:
        print("""ERROR NO CALIBRE: running epub2txt convert version...
It appears you dont have the calibre commandline tools installed on your,
This will allow you to convert from any ebook file format:
Calibre supports the following input formats: CBZ, CBR, CBC, CHM, EPUB, FB2, HTML, LIT, LRF, MOBI, ODT, PDF, PRC, PDB, PML, RB, RTF, SNB, TCR, TXT.

If you want this feature please follow online instruction for downloading the calibre commandline tool.

For Linux its: 
sudo apt update && sudo apt upgrade
sudo apt install calibre
""")
        return False

def convert_with_calibre(file_path, output_format="txt"):
    """Convert a file using Calibre's ebook-convert tool."""
    output_path = file_path.rsplit('.', 1)[0] + '.' + output_format
    subprocess.run(['ebook-convert', file_path, output_path])
    return output_path

import os
import subprocess
import sys

def process_file_headless():
    # Ask for the file path via command line
    while True:
        file_path = input("Enter the file path of the ebook: ")
    
        # Check if the file exists
        if os.path.isfile(file_path):
            # File exists, break out of the loop
            break
        else:
            print("File not found. Please try again.")
    ebook_file_path = file_path
    input_file_is_txt = file_path.lower().endswith('.txt')

    if not os.path.exists(file_path):
        print("File not found. Please check the path and try again.")
        return

    if file_path.lower().endswith(('.cbz', '.cbr', '.cbc', '.chm', '.epub', '.fb2', '.html', '.lit', '.lrf', 
                                  '.mobi', '.odt', '.pdf', '.prc', '.pdb', '.pml', '.rb', '.rtf', '.snb', '.tcr')) and calibre_installed():
        file_path = convert_with_calibre(file_path)
    elif file_path.lower().endswith('.epub') and not calibre_installed():
        content = epub2txt(file_path)
        if not os.path.exists('Working_files'):
            os.makedirs('Working_files')
        file_path = os.path.join('Working_files', 'Book.txt')
        with open(file_path, 'w', encoding='utf-8') as f:
            f.write(content)
    elif not file_path.lower().endswith('.txt'):
        print("Selected file format is not supported or Calibre is not installed.")
        return

    # Now process the TXT file with BookNLP
    book_id = "Book"
    output_directory = os.path.join('Working_files', book_id)

    model_params = {
        "pipeline": "entity,quote,supersense,event,coref",
        "model": "big"
    }

    # Process large numbers in text file to prevent tokenization errors
    process_large_numbers_in_txt(file_path)
    booknlp = BookNLP("en", model_params)

    if calibre_installed():
        create_chapter_labeled_book(file_path)
        booknlp.process('Working_files/Book/Chapter_Book.txt', output_directory, book_id)
        # Clean up temporary files
        if not input_file_is_txt:
            os.remove(file_path)
            print(f"Deleted file: {file_path} because it's not needed anymore after the ebook conversion to txt")
    else:
        booknlp.process(file_path, output_directory, book_id)

    print("Success, File processed successfully!")

# To run the script from the command line
if __name__ == "__main__":
    process_file_headless()






import pandas as pd

def filter_and_correct_quotes(file_path):
    with open(file_path, 'r', encoding='utf-8') as file:
        lines = file.readlines()

    corrected_lines = []
    
    # Filter out lines with mismatched quotes
    for line in lines:
        if line.count('"') % 2 == 0:
            corrected_lines.append(line)

    with open(file_path, 'w', encoding='utf-8') as file:
        file.writelines(corrected_lines)

    print(f"Processed {len(lines)} lines.")
    print(f"Removed {len(lines) - len(corrected_lines)} problematic lines.")
    print(f"Wrote {len(corrected_lines)} lines back to the file.")

if __name__ == "__main__":
    file_path = "Working_files/Book/Book.quotes"
    filter_and_correct_quotes(file_path)





import pandas as pd
import re
import glob
import os

def process_files(quotes_file, tokens_file):
    skip_rows = []
    while True:
        try:
            df_quotes = pd.read_csv(quotes_file, delimiter="\t", skiprows=skip_rows)
            break
        except pd.errors.ParserError as e:
            msg = str(e)
            match = re.search(r'at row (\d+)', msg)
            if match:
                problematic_row = int(match.group(1))
                print(f"Skipping problematic row {problematic_row} in {quotes_file}")
                skip_rows.append(problematic_row)
            else:
                print(f"Error reading {quotes_file}: {e}")
                return

    df_tokens = pd.read_csv(tokens_file, delimiter="\t", on_bad_lines='skip', quoting=3)

    
    last_end_id = 0
    nonquotes_data = []

    for index, row in df_quotes.iterrows():
        start_id = row['quote_start']
        end_id = row['quote_end']
        
        filtered_tokens = df_tokens[(df_tokens['token_ID_within_document'] > last_end_id) & 
                                    (df_tokens['token_ID_within_document'] < start_id)]
        
        words_chunk = ' '.join([str(token_row['word']) for index, token_row in filtered_tokens.iterrows()])
        words_chunk = words_chunk.replace(" n't", "n't").replace(" n’", "n’").replace("( ", "(").replace(" ,", ",").replace("gon na", "gonna").replace(" n’t", "n’t")
        words_chunk = re.sub(r' (?=[^a-zA-Z0-9\s])', '', words_chunk)
        
        if words_chunk:
            nonquotes_data.append([words_chunk, last_end_id, start_id, "False", "Narrator"])
        
        last_end_id = end_id

    nonquotes_df = pd.DataFrame(nonquotes_data, columns=["Text", "Start Location", "End Location", "Is Quote", "Speaker"])
    output_filename = os.path.join(os.path.dirname(quotes_file), "non_quotes.csv")
    nonquotes_df.to_csv(output_filename, index=False)
    print(f"Saved nonquotes.csv to {output_filename}")

def main():
    quotes_files = glob.glob('Working_files/**/*.quotes', recursive=True)
    tokens_files = glob.glob('Working_files/**/*.tokens', recursive=True)

    for q_file in quotes_files:
        base_name = os.path.splitext(os.path.basename(q_file))[0]
        matching_token_files = [t_file for t_file in tokens_files if os.path.splitext(os.path.basename(t_file))[0] == base_name]

        if matching_token_files:
            process_files(q_file, matching_token_files[0])

    print("All processing complete!")

if __name__ == "__main__":
    main()














import pandas as pd
import re
import glob
import os
import nltk

def process_files(quotes_file, entities_file):
    # Load the files
    df_quotes = pd.read_csv(quotes_file, delimiter="\t")
    df_entities = pd.read_csv(entities_file, delimiter="\t")

    character_info = {}

    def is_pronoun(word):
        tagged_word = nltk.pos_tag([word])
        return 'PRP' in tagged_word[0][1] or 'PRP$' in tagged_word[0][1]

    def get_gender(pronoun):
        male_pronouns = ['he', 'him', 'his']
        female_pronouns = ['she', 'her', 'hers']

        if pronoun in male_pronouns:
            return 'Male'
        elif pronoun in female_pronouns:
            return 'Female'
        return 'Unknown'

    # Process the quotes dataframe
    for index, row in df_quotes.iterrows():
        char_id = row['char_id']
        mention = row['mention_phrase']

        # Initialize character info if not already present
        if char_id not in character_info:
            character_info[char_id] = {"names": {}, "pronouns": {}, "quote_count": 0}

        # Update names or pronouns based on the mention_phrase
        if is_pronoun(mention):
            character_info[char_id]["pronouns"].setdefault(mention.lower(), 0)
            character_info[char_id]["pronouns"][mention.lower()] += 1
        else:
            character_info[char_id]["names"].setdefault(mention, 0)
            character_info[char_id]["names"][mention] += 1

        character_info[char_id]["quote_count"] += 1

    # Process the entities dataframe
    for index, row in df_entities.iterrows():
        coref = row['COREF']
        name = row['text']

        if coref in character_info:
            if is_pronoun(name):
                character_info[coref]["pronouns"].setdefault(name.lower(), 0)
                character_info[coref]["pronouns"][name.lower()] += 1
            else:
                character_info[coref]["names"].setdefault(name, 0)
                character_info[coref]["names"][name] += 1

    # Extract the most likely name and gender for each character
    for char_id, info in character_info.items():
        most_likely_name = max(info["names"].items(), key=lambda x: x[1])[0] if info["names"] else "Unknown"
        most_common_pronoun = max(info["pronouns"].items(), key=lambda x: x[1])[0] if info["pronouns"] else None

        gender = get_gender(most_common_pronoun) if most_common_pronoun else 'Unknown'
        gender_suffix = ".M" if gender == 'Male' else ".F" if gender == 'Female' else ".?"

        info["formatted_speaker"] = f"{char_id}:{most_likely_name}{gender_suffix}"
        info["most_likely_name"] = most_likely_name
        info["gender"] = gender

    # Write the formatted data to quotes.csv
    output_filename = os.path.join(os.path.dirname(quotes_file), "quotes.csv")
    with open(output_filename, 'w', newline='') as outfile:
        fieldnames = ["Text", "Start Location", "End Location", "Is Quote", "Speaker"]
        writer = pd.DataFrame(columns=fieldnames)

        for index, row in df_quotes.iterrows():
            char_id = row['char_id']

            if not re.search('[a-zA-Z0-9]', row['quote']):
                print(f"Removing row with text: {row['quote']}")
                continue

            if character_info[char_id]["quote_count"] == 1:
                formatted_speaker = "Narrator"
            else:
                formatted_speaker = character_info[char_id]["formatted_speaker"] if char_id in character_info else "Unknown"

            new_row = {"Text": row['quote'], "Start Location": row['quote_start'], "End Location": row['quote_end'], "Is Quote": "True", "Speaker": formatted_speaker}
            #turn the new_row into a data frame 
            new_row_df = pd.DataFrame([new_row])
            # Concatenate 'writer' with 'new_row_df'
            writer = pd.concat([writer, new_row_df], ignore_index=True)

        writer.to_csv(output_filename, index=False)
        print(f"Saved quotes.csv to {output_filename}")

def main():
    # Use glob to get all .quotes and .entities files within the "Working_files" directory and its subdirectories
    quotes_files = glob.glob('Working_files/**/*.quotes', recursive=True)
    entities_files = glob.glob('Working_files/**/*.entities', recursive=True)

    # Pair and process .quotes and .entities files with matching filenames (excluding the extension)
    for q_file in quotes_files:
        base_name = os.path.splitext(os.path.basename(q_file))[0]
        matching_entities_files = [e_file for e_file in entities_files if os.path.splitext(os.path.basename(e_file))[0] == base_name]

        if matching_entities_files:
            process_files(q_file, matching_entities_files[0])

    print("All processing complete!")

if __name__ == "__main__":
    main()






import pandas as pd
import re
import glob
import os

def process_files(quotes_file, tokens_file):
    # Load the files
    df_quotes = pd.read_csv(quotes_file, delimiter="\t")
    df_tokens = pd.read_csv(tokens_file, delimiter="\t", on_bad_lines='skip', quoting=3)

    last_end_id = 0  # Initialize the last_end_id to 0
    nonquotes_data = []  # List to hold data for nonquotes.csv

    # Iterate through the quotes dataframe
    for index, row in df_quotes.iterrows():
        start_id = row['quote_start']
        end_id = row['quote_end']
        
        # Get tokens between the end of the last quote and the start of the current quote
        filtered_tokens = df_tokens[(df_tokens['token_ID_within_document'] > last_end_id) & 
                                    (df_tokens['token_ID_within_document'] < start_id)]
        
        # Build the word chunk
        #words_chunk = ' '.join([token_row['word'] for index, token_row in filtered_tokens.iterrows()])
        words_chunk = ' '.join([str(token_row['word']) for index, token_row in filtered_tokens.iterrows()])
        words_chunk = words_chunk.replace(" n't", "n't").replace(" n’", "n’").replace(" ’", "’").replace(" ,", ",").replace(" .", ".").replace(" n’t", "n’t")
        words_chunk = re.sub(r' (?=[^a-zA-Z0-9\s])', '', words_chunk)
        
        # Append data to nonquotes_data if words_chunk is not empty
        if words_chunk:
            nonquotes_data.append([words_chunk, last_end_id, start_id, "False", "Narrator"])
        
        last_end_id = end_id  # Update the last_end_id to the end_id of the current quote

    # Create a DataFrame for non-quote data
    nonquotes_df = pd.DataFrame(nonquotes_data, columns=["Text", "Start Location", "End Location", "Is Quote", "Speaker"])

    # Write to nonquotes.csv
    output_filename = os.path.join(os.path.dirname(quotes_file), "non_quotes.csv")
    nonquotes_df.to_csv(output_filename, index=False)
    print(f"Saved nonquotes.csv to {output_filename}")

def main():
    # Use glob to get all .quotes and .tokens files within the "Working_files" directory and its subdirectories
    quotes_files = glob.glob('Working_files/**/*.quotes', recursive=True)
    tokens_files = glob.glob('Working_files/**/*.tokens', recursive=True)

    # Pair and process .quotes and .tokens files with matching filenames (excluding the extension)
    for q_file in quotes_files:
        base_name = os.path.splitext(os.path.basename(q_file))[0]
        matching_token_files = [t_file for t_file in tokens_files if os.path.splitext(os.path.basename(t_file))[0] == base_name]

        if matching_token_files:
            process_files(q_file, matching_token_files[0])

    print("All processing complete!")

if __name__ == "__main__":
    main()




import pandas as pd
import numpy as np

# Read the CSV files
quotes_df = pd.read_csv("Working_files/Book/quotes.csv")
non_quotes_df = pd.read_csv("Working_files/Book/non_quotes.csv")

# Concatenate the dataframes
combined_df = pd.concat([quotes_df, non_quotes_df], ignore_index=True)

# Convert 'None' to NaN
combined_df.replace('None', np.nan, inplace=True)

# Drop rows with NaN in 'Start Location'
combined_df.dropna(subset=['Start Location'], inplace=True)

# Convert the 'Start Location' column to integers
combined_df["Start Location"] = combined_df["Start Location"].astype(int)

# Sort by 'Start Location'
sorted_df = combined_df.sort_values(by="Start Location")

# Save to 'book.csv'
sorted_df.to_csv("Working_files/Book/book.csv", index=False)






#if booknlp came up with nothing then just use the other_book.csv file thank god i still have that code
import os
import tkinter as tk
from tkinter import messagebox

def is_single_line_file(filename):
    with open(filename, 'r') as file:
        return len(file.readlines()) <= 1

def copy_if_single_line(source_file, destination_file):
    if not os.path.isfile(source_file):
        return f"The source file '{source_file}' does not exist."
    elif is_single_line_file(destination_file):
        with open(source_file, 'r') as source:
            content = source.read()

        with open(destination_file, 'w') as dest:
            dest.write(content)

        ## Popup message
        #root = tk.Tk()
        #root.withdraw()  # Hide the main window
        #messagebox.showinfo("Notification", "The 'book.csv' file was found to be empty, so all lines in the book will be said by the narrator.")
        #root.destroy()
        print(f"Notification:")
        print(f"The 'book.csv' file was found to be empty, so all lines in the book will be said by the narrator.")

        return f"File '{destination_file}' had only one line or was empty and has been filled with the contents of '{source_file}'."
    else:
        return f"File '{destination_file}' had more than one line, and no action was taken."

source_file = 'Working_files/Book/Other_book.csv'
destination_file = 'Working_files/Book/book.csv'

result = copy_if_single_line(source_file, destination_file)
print(result)







#this is a clean up script to try to clean up the quotes.csv and non_quotes.csv files of any types formed by booknlp
import pandas as pd
import os
import re

def process_text(text):
    # Apply the rule to remove spaces before punctuation and other non-alphanumeric characters
    text = re.sub(r' (?=[^a-zA-Z0-9\s])', '', text)
    # Replace " n’t" with "n’t"
    text = text.replace(" n’t", "n’t").replace("[", "(").replace("]", ")").replace("gon na", "gonna").replace("—————–", "").replace(" n't", "n't")
    return text

def process_file(filename):
    # Load the file
    df = pd.read_csv(filename)

    # Check if the "Text" column exists
    if "Text" in df.columns:
        # Apply the rules to the "Text" column
        df['Text'] = df['Text'].apply(lambda x: process_text(str(x)))
        
        # Save the processed data back to the file
        df.to_csv(filename, index=False)
        print(f"Processed and saved {filename}")
    else:
        print(f"Column 'Text' not found in {filename}")

def main():
    folder_path = "Working_files/Book/"
    files = ["non_quotes.csv", "quotes.csv", "book.csv"]

    for filename in files:
        full_path = os.path.join(folder_path, filename)
        if os.path.exists(full_path):
            process_file(full_path)
        else:
            print(f"File {filename} not found in {folder_path}")

if __name__ == "__main__":
    main()

#this code here will split the bookcsv file by the calibre chapter deliminators such if calibre is installed
if calibre_installed():
    process_and_split_csv("Working_files/Book/book.csv", 'NEWCHAPTERABC')
remove_empty_text_rows("Working_files/Book/book.csv")




#this will wipe the computer of any current audio clips from a previous session
#but itll ask the user first
import os
import tkinter as tk
from tkinter import messagebox

def check_and_wipe_folder(directory_path):
    # Check if the directory exists
    if not os.path.exists(directory_path):
        print(f"The directory {directory_path} does not exist!")
        return

    # Check for .wav files in the directory
    wav_files = [f for f in os.listdir(directory_path) if f.endswith('.wav')]

    if wav_files:  # If there are .wav files
        ## Initialize tkinter
        #root = tk.Tk()
        #root.withdraw()  # Hide the main window

        ## Ask the user if they want to delete the files
        #response = messagebox.askyesno("Confirm Deletion", "Audio clips from a previous session have been found. Do you want to wipe them?")
        #root.destroy()  # Destroy the tkinter instance
        #response = input("Audio clips from a previous session have been found. Do you want to wipe them? (yes/no): ").strip().lower()
        response = "yes"


        if response == 'yes':  # If the user types 'yes'
            # Iterate through files and delete them
            for filename in wav_files:
                file_path = os.path.join(directory_path, filename)
                try:
                    os.remove(file_path)
                    print(f"Deleted: {file_path}")
                except Exception as e:
                    print(f"Failed to delete {file_path}. Reason: {e}")
        else:
            print("Wipe operation cancelled by the user.")
    else:
        print("No audio clips from a previous session were found.")

# Usage
check_and_wipe_folder("Working_files/generated_audio_clips/")





from TTS.api import TTS

import tkinter as tk
from tkinter import ttk, scrolledtext, messagebox, simpledialog, filedialog
import threading
import pandas as pd
import random
import os
import time

import os
import pandas as pd
import random
import shutil

import torch
import torchaudio
import time
import pygame
import nltk
from nltk.tokenize import sent_tokenize
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
nltk.download('punkt')

# Ensure that nltk punkt is downloaded
nltk.download('punkt', quiet=True)


demo_text = "Imagine a world where endless possibilities await around every corner."

# Load the CSV data
csv_file="Working_files/Book/book.csv"
data = pd.read_csv(csv_file)

#voice actors folder
voice_actors_folder ="tortoise/voices/"
# Get the list of voice actors
voice_actors = [va for va in os.listdir(voice_actors_folder) if va != "cond_latent_example"]
male_voice_actors = [va for va in voice_actors if va.endswith(".M")]
female_voice_actors = [va for va in voice_actors if va.endswith(".F")]
SILENCE_DURATION_MS = 750
# Dictionary to hold each character's selected language
character_languages = {}

models = TTS().list_models()
#selected_tts_model = 'tts_models/multilingual/multi-dataset/xtts_v2'

#I have to do this right now cause they made a weird change to coqui idk super weird the list models isnt working right now
#so this will chekc if its a list isk man and if not then the bug is still there and itll apply the fix

if isinstance(models, list):
    print("good it's a list I can apply normal code for model list")
    selected_tts_model = models[0]
else:
    tts_manager = TTS().list_models()
    all_models = tts_manager.list_models()
    models = all_models
    selected_tts_model = models[0]


# Map for speaker to voice actor
speaker_voice_map = {}
CHAPTER_KEYWORD = "CHAPTER"

multi_voice_model1 ="tts_models/en/vctk/vits"
multi_voice_model2 ="tts_models/en/vctk/fast_pitch"
multi_voice_model3 ="tts_models/ca/custom/vits"

#multi_voice_model_voice_list1 =speakers_list = TTS(multi_voice_model1).speakers
#multi_voice_model_voice_list2 =speakers_list = TTS(multi_voice_model2).speakers
#multi_voice_model_voice_list3 =speakers_list = TTS(multi_voice_model3).speakers
multi_voice_model_voice_list1 = []
multi_voice_model_voice_list2 = []
multi_voice_model_voice_list3 = []

# Dictionary to hold the comboboxes references
voice_comboboxes = {}

fast_voice_clone_models = [model for model in models if "multi-dataset" not in model]

# Creating a dictionary with specific values for the defined models
fast_voice_clone_models_dict = {
    model: "p363" if model == multi_voice_model1 else
           "VCTK_p226" if model == multi_voice_model2 else
           "pep" if model == multi_voice_model3 else
           None
    for model in fast_voice_clone_models
}



def on_silence_duration_change(*args):
    """
    Update the SILENCE_DURATION_MS based on the entry value.
    """
    global SILENCE_DURATION_MS
    try:
        new_duration = int(silence_duration_var.get())
        if new_duration >= 0:
            SILENCE_DURATION_MS = new_duration
            print(f"SILENCE_DURATION_MS changed to: {SILENCE_DURATION_MS}")
        else:
            raise ValueError
    except ValueError:
        messagebox.showerror("Invalid Input", "Please enter a valid non-negative integer.")

def validate_integer(P):
    """
    Validate if the entry is an integer.
    """
    if P.isdigit() or P == "":
        return True
    else:
        messagebox.showerror("Invalid Input", "Please enter a valid integer.")
        return False

def update_silence_duration():
    """
    Update the SILENCE_DURATION_MS based on the entry value.
    """
    global SILENCE_DURATION_MS
    try:
        SILENCE_DURATION_MS = int(silence_duration_var.get())
    except ValueError:
        messagebox.showerror("Invalid Input", "Please enter a valid integer.")



def add_languages_to_csv():
    df = pd.read_csv('Working_files/Book/book.csv')  # Make sure to use your actual CSV file path
    if 'language' not in df.columns:
        # Map the 'Speaker' column to the 'language' column using the character_languages dictionary
        # The get method returns 'en' as a default value if the speaker is not found in the dictionary
        df['language'] = df['Speaker'].apply(lambda speaker: character_languages.get(speaker, 'en'))
    df.to_csv('Working_files/Book/book.csv', index=False)  # Save the changes back to the CSV file
    print("Added language data to the CSV file.")



def add_voice_actors_to_csv():
    df = pd.read_csv(csv_file)
    if 'voice_actor' not in df.columns:
        df['voice_actor'] = df['Speaker'].map(speaker_voice_map)
    df.to_csv(csv_file, index=False)
    print(f"Added voice actor data to {csv_file}")

def get_random_voice_for_speaker(speaker):
    selected_voice_actors = voice_actors  # default to all voice actors

    if speaker.endswith(".M") and male_voice_actors:    
        selected_voice_actors = male_voice_actors
    elif speaker.endswith(".F") and female_voice_actors:
        selected_voice_actors = female_voice_actors

    if not selected_voice_actors:  # If list is empty, default to all voice actors
        selected_voice_actors = voice_actors
        
    return random.choice(selected_voice_actors)
    
def get_random_voice_for_speaker_fast(speaker):
    selected_voice_actors = voice_actors  # default to all voice actors
    male_voice_actors = {"p226", "p228","p229","p230","p231","p232","p233","p234","p236","p238","p239","p241","p251","p252","p253","p254","p255","p256","p258","p262","p264","p265","p266","p267","p269","p272","p279","p281","p282","p285","p286","p287","p292","p298","p299","p301","p302","p307","p312","p313","p317","p318","p326","p340"}
    female_voice_actors = {"p225","p227","p237","p240","p243","p244","p245","p246","p247","p248","p249","p250","p257","p259","p260","p261","p263","p268","p270","p271","p273","p274","p275","p276","p277","p280","p283","p284","p288","p293","p294","p295","p297","p300","p303","p304","p305","p306","p308","p310","p311","p314","p316","p323","p329","p341","p343","p345","p347","p351","p360","p361","p362","p363","p364","p374"}

    if speaker.endswith(".M") and male_voice_actors: 
        selected_voice_actors = male_voice_actors
    elif speaker.endswith(".F") and female_voice_actors:
        selected_voice_actors = female_voice_actors
    elif speaker.endswith(".?") and female_voice_actors:
        selected_voice_actors = male_voice_actors.union(female_voice_actors)
    if not selected_voice_actors:  # If list is empty, default to all voice actors
        selected_voice_actors = male_voice_actors.union(female_voice_actors)
    
    # Convert the set to a list before using random.choice
    return random.choice(list(selected_voice_actors))

    
def ensure_output_folder():
    if not os.path.exists("Working_files/generated_audio_clips"):
        os.mkdir("Working_files/generated_audio_clips")
        
def ensure_temp_folder():
    if not os.path.exists("Working_files/temp"):
        os.mkdir("Working_files/temp")

import random
import time

def select_voices():
    global speaker_voice_map
    random.seed(int(time.time()))
    ensure_output_folder()
    total_rows = len(data)  # Assuming 'data' contains your dataset with a 'Speaker' column

    # Assign initial random voices
    speaker_voice_map = {speaker: get_random_voice_for_speaker(speaker) for speaker in data['Speaker'].unique()}

    # Function to display current voice selections and offer changes
    def review_and_modify_speaker_voices():
        while True:
            # Display current selections
            print("\nCurrent voice selections:")
            for index, (speaker, voice) in enumerate(speaker_voice_map.items(), start=1):
                print(f"{index}. {speaker}: {voice}")

            # Ask if user wants to change any selection
            #change = input("Would you like to change any voice assignments? (yes/no): ").lower()
            change = "no"
            if change != 'yes':
                break

            # Get user input for which speaker to change
            try:
                selection = int(input("Enter the number of the speaker to change the voice for: ")) - 1
                if selection < 0 or selection >= len(speaker_voice_map):
                    raise ValueError("Selection out of range.")
                selected_speaker = list(speaker_voice_map.keys())[selection]
            except ValueError as e:
                print(f"Invalid input: {e}")
                continue

            # Display available voices and allow user to choose
            print(f"Available voices for {selected_speaker}:")
            available_voices = [get_random_voice_for_speaker(selected_speaker) for _ in range(5)]  # Assuming you can call this multiple times to get different options
            for idx, voice in enumerate(available_voices, start=1):
                print(f"{idx}. {voice}")
            try:
                new_voice_selection = int(input("Select the new voice by number: ")) - 1
                if new_voice_selection < 0 or new_voice_selection >= len(available_voices):
                    raise ValueError("Selection out of range.")
                # Update the speaker's voice in the map
                speaker_voice_map[selected_speaker] = available_voices[new_voice_selection]
                print(f"Voice for {selected_speaker} changed to {available_voices[new_voice_selection]}")
            except ValueError as e:
                print(f"Invalid input: {e}")

    review_and_modify_speaker_voices()
    print("Final voice assignments have been set.")

 
def select_voices_fast():
    random.seed(int(time.time()))
    ensure_output_folder()
    total_rows = len(data)

    for speaker in data['Speaker'].unique():
        random_voice = get_random_voice_for_speaker_fast(speaker)
        speaker_voice_map[speaker] = random_voice

    for speaker, voice in speaker_voice_map.items():
        print(f"Selected voice for {speaker}: {voice}")
        # Update the comboboxes if they exist
        if speaker in voice_comboboxes:
            random_voice = get_random_voice_for_speaker_fast(speaker)
            voice_comboboxes[speaker].set(random_voice)
    print("Voices have been selected randomly.")
 
 
# Pre-select the voices before starting the GUI
select_voices()

## Main application window
#root = tk.Tk()
#root.title("coqui TTS GUI")
#root.geometry("1200x800")
#if calibre_installed():
#    chapter_delimiter_var = tk.StringVar(value="NEWCHAPTERABC")
#else:
#    chapter_delimiter_var = tk.StringVar(value="CHAPTER")

# Assume calibre_installed is a function that returns True if Calibre is installed, otherwise False

class Delimiter:
    def __init__(self, value):
        self._value = value
        self._callbacks = []

    def get(self):
        return self._value

    def set(self, new_value):
        self._value = new_value
        self._run_callbacks()

    def _run_callbacks(self):
        for callback in self._callbacks:
            callback()

    def trace_add(self, mode, callback):
        if mode == "write":
            self._callbacks.append(callback)

def update_chapter_keyword():
    print("Chapter delimiter updated to:", chapter_delimiter_var.get())

if calibre_installed():
    chapter_delimiter_var = Delimiter("NEWCHAPTERABC")
else:
    chapter_delimiter_var = Delimiter("CHAPTER")




# Initialize the mixer module
try:
    pygame.mixer.init()
    print("mixer modual initialized successfully.")
except pygame.error:
    print("mixer modual initialization failed")
    print(pygame.error)

# This function is called when a voice actor is selected from the dropdown
def update_voice_actor(speaker):
    selected_voice_actor = voice_comboboxes[speaker].get()
    speaker_voice_map[speaker] = selected_voice_actor
    print(f"Updated voice for {speaker}: {selected_voice_actor}")

    # Get a random reference file for the selected voice actor
    reference_files = list_reference_files(selected_voice_actor)
    if reference_files:  # Check if there are any reference files
        random_file = random.choice(reference_files)
        try:
            # Stop any currently playing music or sound
            pygame.mixer.music.stop()
            pygame.mixer.stop()

            if random_file.endswith('.mp3'):
                # Use the music module for mp3 files
                pygame.mixer.music.load(random_file)
                pygame.mixer.music.play()
            else:
                # Use the Sound class for wav files
                sound = pygame.mixer.Sound(random_file)
                sound.play()
        except Exception as e:
            print(f"Could not play the audio file: {e}")


# Function to split long strings into parts
def split_long_sentence(sentence, max_length=230, max_pauses=8):
    """
    Splits a sentence into parts based on length or number of pauses without recursion.
    
    :param sentence: The sentence to split.
    :param max_length: Maximum allowed length of a sentence.
    :param max_pauses: Maximum allowed number of pauses in a sentence.
    :return: A list of sentence parts that meet the criteria.
    """
    parts = []
    while len(sentence) > max_length or sentence.count(',') + sentence.count(';') + sentence.count('.') > max_pauses:
        possible_splits = [i for i, char in enumerate(sentence) if char in ',;.' and i < max_length]
        if possible_splits:
            # Find the best place to split the sentence, preferring the last possible split to keep parts longer
            split_at = possible_splits[-1] + 1
        else:
            # If no punctuation to split on within max_length, split at max_length
            split_at = max_length
        
        # Split the sentence and add the first part to the list
        parts.append(sentence[:split_at].strip())
        sentence = sentence[split_at:].strip()
    
    # Add the remaining part of the sentence
    parts.append(sentence)
    return parts



def combine_wav_files(input_directory, output_directory, file_name):
    # Get a list of all .wav files in the specified input directory
    input_file_paths = [os.path.join(input_directory, f) for f in os.listdir(input_directory) if f.endswith(".wav")]

    # Sort the file paths to ensure numerical order
    input_file_paths.sort(key=lambda f: int(''.join(filter(str.isdigit, f))))

    # Create an empty list to store the loaded audio tensors
    audio_tensors = []

    # Iterate through the sorted input file paths and load each audio file
    for input_file_path in input_file_paths:
        waveform, sample_rate = torchaudio.load(input_file_path)
        audio_tensors.append(waveform)

    # Concatenate the audio tensors along the time axis (dimension 1)
    combined_audio = torch.cat(audio_tensors, dim=1)

    # Ensure that the output directory exists, create it if necessary
    os.makedirs(output_directory, exist_ok=True)

    # Specify the output file path
    output_file_path = os.path.join(output_directory, file_name)

    # Save the combined audio to the output file path
    torchaudio.save(output_file_path, combined_audio, sample_rate)

    print(f"Combined audio saved to {output_file_path}")

def wipe_folder(directory_path):
    # Ensure the directory exists
    if not os.path.exists(directory_path):
        print(f"The directory {directory_path} does not exist!")
        return

    # Iterate through files in the directory
    for filename in os.listdir(directory_path):
        file_path = os.path.join(directory_path, filename)
        
        # Check if it's a regular file (not a subdirectory)
        if os.path.isfile(file_path):
            try:
                os.remove(file_path)
                print(f"Deleted: {file_path}")
            except Exception as e:
                print(f"Failed to delete {file_path}. Reason: {e}")


# List of available TTS models

tts_models = [
    #'tts_models/multilingual/multi-dataset/xtts_v2',
    # Add all other models here...
]
tts_models = TTS().list_models()


#This is another coqui bug fix i have to apply for the bug idk why but nwo there this lol it started in coqui V0.22.0
#this will make the models list actually work tho
if isinstance(tts_models, list):
    print("good it's a list I can apply normal code for model list")
    selected_tts_model = models[0]
else:
    tts_manager = TTS().list_models()
    all_models = tts_manager.list_models()
    tts_models = all_models



# Function to update the selected TTS model
def update_tts_model(event):
    global selected_tts_model
    selected_tts_model = tts_model_combobox.get()
    print(f"Selected TTS model: {selected_tts_model}")



multilingual_tts_models = [model for model in tts_models if "multi-dataset" in model]
multilingual_tts_models.append('StyleTTS2')

# modelse to be removed because i found that they are multi speaker and not single speaker
models_to_remove = [multi_voice_model1, multi_voice_model2, multi_voice_model3]

# List comprehension to remove the unwatned models
multilingual_tts_models = [model for model in multilingual_tts_models if model not in models_to_remove]



# Declare the button as global to access it in other functions
global select_voices_button


def update_voice_comboboxes():
    global multi_voice_model_voice_list1
    global multi_voice_model_voice_list2
    global multi_voice_model_voice_list3
    global voice_actors
    global female_voice_actors
    global male_voice_actors
    #updating the values of the avalible voice actors too
    voice_actors = [va for va in os.listdir(voice_actors_folder) if va != "cond_latent_example"]
    male_voice_actors = [va for va in voice_actors if va.endswith(".M")]
    female_voice_actors = [va for va in voice_actors if va.endswith(".F")]

    # your code snippet to include single voice models
    filtered_tts_models = [model for model in tts_models if "multi-dataset" not in model]
    if not multi_voice_model_voice_list1:  # This is True if the list is empty
        print(f"{multi_voice_model_voice_list1} is empty populating it...")
        multi_voice_model_voice_list1 = TTS(multi_voice_model1).speakers
    if not multi_voice_model_voice_list2:  # This is True if the list is empty
        print(f"{multi_voice_model_voice_list2} is empty populating it...")
        multi_voice_model_voice_list2 = TTS(multi_voice_model2).speakers
    if not multi_voice_model_voice_list3:  # This is True if the list is empty
        print(f"{multi_voice_model_voice_list3} is empty populating it...")
        multi_voice_model_voice_list3 = TTS(multi_voice_model3).speakers
            

    combined_values = voice_actors + filtered_tts_models
    combined_values += multi_voice_model_voice_list1 + multi_voice_model_voice_list2 + multi_voice_model_voice_list3
    #this will remove unwatned models from the model list, thats cause these three are multi-speaker so im already including them as their voices
    combined_values.remove(multi_voice_model1)
    combined_values.remove(multi_voice_model2)
    combined_values.remove(multi_voice_model3)

    # Now update each combobox with the new combined_values
    for speaker, combobox in voice_comboboxes.items():
        combobox['values'] = combined_values
        combobox.set(speaker_voice_map[speaker])  # Reset to the currently selected voice actor
        longest_string_length = max((len(str(value)) for value in combobox['values']), default=0)
        combobox.config(width=longest_string_length)
        


    # Filter models that are not 'multi-dataset'
    filtered_tts_models = [model for model in tts_models if "multi-dataset" not in model]

    # Extend the model list with filtered models
    multilingual_tts_models.extend(filtered_tts_models)



    # Set default value if needed
    #tts_model_combobox.set(selected_tts_model)


## Create a frame for the checkboxes
#checkbox_frame = ttk.Frame(root)
#checkbox_frame.pack(fill='x', pady=10)






# Call this function once initially to set the correct values from the start
update_voice_comboboxes()




def create_folder_if_not_exists(folder_path):
    if not os.path.exists(folder_path):
        os.makedirs(folder_path)
        print(f"Folder '{folder_path}' created successfully.")
    else:
        print(f"Folder '{folder_path}' already exists.")


#i want to gigv ethis the voice actor name and have it turn that into the full directory of the voice actor location, and then use that to grab all the files inside of that voice actoers folder
def list_reference_files(voice_actor):
    global multi_voice_model_voice_list1
    global multi_voice_model_voice_list2
    global multi_voice_model_voice_list3
    if voice_actor in multi_voice_model_voice_list1:
        create_folder_if_not_exists(f"tortoise/_model_demo_voices/{multi_voice_model1}/{voice_actor}")
        reference_files = [os.path.join(f"tortoise/_model_demo_voices/{multi_voice_model1}/{voice_actor}", file) for file in os.listdir(f"tortoise/_model_demo_voices/{multi_voice_model1}/{voice_actor}") if file.endswith((".wav", ".mp3"))]
        if len(reference_files)==0:
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
            fast_tts = TTS(multi_voice_model1, progress_bar=True).to(device)
            fast_tts.tts_to_file(text=demo_text , file_path=f"tortoise/_model_demo_voices/{multi_voice_model1}/{voice_actor}/demo.wav", speaker = voice_actor)
            reference_files = [os.path.join(f"tortoise/_model_demo_voices/{multi_voice_model1}/{voice_actor}", file) for file in os.listdir(f"tortoise/_model_demo_voices/{multi_voice_model1}/{voice_actor}") if file.endswith((".wav", ".mp3"))]
            return reference_files
        else:
            return reference_files
            
            
    elif voice_actor in multi_voice_model_voice_list2:
        create_folder_if_not_exists(f"tortoise/_model_demo_voices/{multi_voice_model2}/{voice_actor}")
        reference_files = [os.path.join(f"tortoise/_model_demo_voices/{multi_voice_model2}/{voice_actor}", file) for file in os.listdir(f"tortoise/_model_demo_voices/{multi_voice_model2}/{voice_actor}") if file.endswith((".wav", ".mp3"))]
        if len(reference_files)==0:
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
            fast_tts = TTS(multi_voice_model2, progress_bar=True).to("cpu")
            fast_tts.tts_to_file(text=demo_text , file_path=f"tortoise/_model_demo_voices/{multi_voice_model2}/{voice_actor}/demo.wav", speaker = voice_actor)
            reference_files = [os.path.join(f"tortoise/_model_demo_voices/{multi_voice_model2}/{voice_actor}", file) for file in os.listdir(f"tortoise/_model_demo_voices/{multi_voice_model2}/{voice_actor}") if file.endswith((".wav", ".mp3"))]
            return reference_files
        else:
            return reference_files

            
            
    elif voice_actor in multi_voice_model_voice_list3:
        create_folder_if_not_exists(f"tortoise/_model_demo_voices/{multi_voice_model3}/{voice_actor}")
        reference_files = [os.path.join(f"tortoise/_model_demo_voices/{multi_voice_model3}/{voice_actor}", file) for file in os.listdir(f"tortoise/_model_demo_voices/{multi_voice_model3}/{voice_actor}") if file.endswith((".wav", ".mp3"))]
        if len(reference_files)==0:
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
            fast_tts = TTS(multi_voice_model3, progress_bar=True).to(device)
            fast_tts.tts_to_file(text=demo_text , file_path=f"tortoise/_model_demo_voices/{multi_voice_model3}/{voice_actor}/demo.wav", speaker = voice_actor)
            reference_files = [os.path.join(f"tortoise/_model_demo_voices/{multi_voice_model3}/{voice_actor}", file) for file in os.listdir(f"tortoise/_model_demo_voices/{multi_voice_model3}/{voice_actor}") if file.endswith((".wav", ".mp3"))]
            return reference_files
        else:
            return reference_files

            
            
    elif "tts_models" in voice_actor:
        create_folder_if_not_exists("tortoise/_model_demo_voices")
        create_folder_if_not_exists(f"tortoise/_model_demo_voices/{voice_actor}")
        reference_files = [os.path.join(f"tortoise/_model_demo_voices/{voice_actor}", file) for file in os.listdir(f"tortoise/_model_demo_voices/{voice_actor}") if file.endswith((".wav", ".mp3"))]
        if len(reference_files)==0:
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
            fast_tts = TTS(voice_actor, progress_bar=True).to(device)
            fast_tts.tts_to_file(text=demo_text , file_path=f"tortoise/_model_demo_voices/{voice_actor}/demo.wav")
            reference_files = [os.path.join(f"tortoise/_model_demo_voices/{voice_actor}", file) for file in os.listdir(f"tortoise/_model_demo_voices/{voice_actor}") if file.endswith((".wav", ".mp3"))]
            return reference_files
        else:
            return reference_files
            
        

    single_voice_actor_folder = f"{voice_actors_folder}{voice_actor}/"
    # List all .wav and .mp3 files in the folder
    reference_files = [os.path.join(single_voice_actor_folder, file) for file in os.listdir(single_voice_actor_folder) if file.endswith((".wav", ".mp3"))]
    return reference_files


# List of language codes and their display names
languages = {
    'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de',
    'Italian': 'it', 'Portuguese': 'pt', 'Polish': 'pl', 'Turkish': 'tr',
    'Russian': 'ru', 'Dutch': 'nl', 'Czech': 'cs', 'Arabic': 'ar',
    'Chinese': 'zh-cn', 'Japanese': 'ja', 'Hungarian': 'hu', 'Korean': 'ko'
}

# Variable to hold the current language selection, default to English
current_language = 'en'


current_model =""


tts = None
STTS = None



def generate_file_ids(csv_file, chapter_delimiter):

    data = pd.read_csv(csv_file)
    
    if 'audio_id' not in data.columns:
        data['audio_id'] = [''] * len(data)
    
    chapter_num = 0
    
    for index, row in data.iterrows():
        text = row['Text']  # Adjust to the correct column name, e.g., 'Text' if it's uppercase in the CSV
        print(f"{text}")
        if chapter_delimiter in text:  # Ensure both are uppercase for case-insensitive matching/edit: nah 
            chapter_num = chapter_num +1
        
        data.at[index, 'audio_id'] = f"audio_{index}_{chapter_num}"
    
    data.to_csv(csv_file, index=False)
    print(f"'audio_id' column has been updated in {csv_file}")
#delim = chapter_delimiter_var.get()
generate_file_ids(csv_file, chapter_delimiter_var.get())


#function to generate audio for fine tuned speakers in xtts
import os
import torch
import torchaudio
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
import time
import sys
from styletts2 import tts as stts

# Function to install package using pip
def install(package):
    subprocess.check_call([sys.executable, "-m", "pip", "install", package])

def fineTune_audio_generate(text, file_path, speaker_wav, language, voice_actor):
    global current_model
    global tts
    start_time = time.time()  # Record the start time

    # Get device
    device = "cuda" if torch.cuda.is_available() else "cpu"
    # Add here the xtts_config path
    CONFIG_PATH = f"tortoise/voices/{voice_actor}/model/config.json"
    # Add here the vocab file that you have used to train the model
    TOKENIZER_PATH = f"tortoise/voices/{voice_actor}/model/vocab.json_"
    # Add here the checkpoint that you want to do inference with
    XTTS_CHECKPOINT = f"tortoise/voices/{voice_actor}/model/model.pth"
    # Add here the speaker reference
    SPEAKER_REFERENCE = speaker_wav
    # output wav path
    OUTPUT_WAV_PATH = file_path


    if current_model !=  voice_actor:
        print(f"found fine tuned for voice actor: {voice_actor}: loading custom model...")
        config = XttsConfig()
        config.load_json(CONFIG_PATH)
        if 'tts' not in locals():
            tts = Xtts.init_from_config(config)
            tts.load_checkpoint(config, checkpoint_path=XTTS_CHECKPOINT, vocab_path=TOKENIZER_PATH, use_deepspeed=False)
        #make sure it runs on cpu or cuda depending on whats avalible on the machine
        if device == "cuda":
            tts.cuda()
        if device == "cpu":
            tts.cpu()
        current_model = voice_actor
    else:
        print(f"found fine tuned model for voice actor: {voice_actor} but {voice_actor} model is already loaded")

    print("Computing speaker latents...")
    gpt_cond_latent, speaker_embedding = tts.get_conditioning_latents(audio_path=[SPEAKER_REFERENCE])

    print("Inference...")
    out = tts.inference(
        text,
        language,
        gpt_cond_latent,
        speaker_embedding,
        temperature=0.7, # Add custom parameters here
    )
    torchaudio.save(OUTPUT_WAV_PATH, torch.tensor(out["wav"]).unsqueeze(0), 24000)

    end_time = time.time()  # Record the end time
    elapsed_time = end_time - start_time
    print(f"Time taken for execution: {elapsed_time:.2f} seconds")

def select_tts_model():
    
    models = TTS().list_models()  # Fetches all available TTS models
    additional_models = ["StyleTTS2"]  # Manually add any special or last-minute models here
    all_models = models + additional_models  # Combine lists
    current_model = all_models[0]  # Default to the first model in the combined list

    while True:
        print(f"The TTS model currently selected is {current_model}.")
        #response = input("Would you like to keep this model? (yes/no): ").strip().lower()
        response = "yes"
        
        if response == 'yes':
            return current_model
        elif response == 'no':
            print("Available models:")
            for model in all_models:
                print(model)
            
            while True:
                selected_model = input("Please type the name of one of the above models: ").strip()
                if selected_model in all_models:
                    current_model = selected_model
                    break
                else:
                    print("Invalid model. Please select a model from the list.")
        else:
            print("Please answer 'yes' or 'no'.")





#this code will have the user add a fine tuned xtts modela and also be able to clone a voice in the terminal without a gui
import os
import shutil
from tkinter import filedialog

def clone_new_voice():
    while True:
        #confirm = input("Do you want to clone a new voice? (yes/no): ").lower()
        confirm = "no"
        if confirm == 'yes':
            voice_actor_name = input("Enter the name of the new voice actor: ")
            voice_actor_gender = input("Enter the gender of the new voice actor (M/F/?): ")
            new_voice_path = f"tortoise/voices/{voice_actor_name}.{voice_actor_gender}"

            if not os.path.exists(new_voice_path):
                os.makedirs(new_voice_path)
                print(f"New directory created at: {new_voice_path}")
                print("Please enter the path to the voice sample file to copy:")
                sample_file = input("Enter file path: ")
                if os.path.exists(sample_file):
                    shutil.copy(sample_file, new_voice_path)
                    print("Sample file copied successfully.")
                else:
                    print("The file does not exist. Please check the path and try again.")
            else:
                print("Voice actor folder already exists.")

            repeat = input("Do you want to clone another new voice? (yes/no): ").lower()
            if repeat != 'yes':
                break
        elif confirm == 'no':
            break
        else:
            print("Please answer 'yes' or 'no'.")


def add_fine_tuned_model():
    while True:
        #confirm = input("Do you want to add a fine-tuned XTTS model to a voice actor? (yes/no): ").lower()
        confirm = "no"
        if confirm == 'yes':
            base_directory = "tortoise/voices/"
            folders = [folder for folder in os.listdir(base_directory) if os.path.isdir(os.path.join(base_directory, folder))]

            print("Select a voice actor to add a fine-tuned model to:")
            for index, folder in enumerate(folders):
                print(f"{index}: {folder}")

            selected_index = int(input("Enter the number corresponding to the voice actor: "))
            selected_folder = folders[selected_index]
            model_path = os.path.join(base_directory, selected_folder, "model")
            if not os.path.exists(model_path):
                os.makedirs(model_path)

            print("Please enter the path to the folder containing fine-tuned XTTS model files to copy from:")
            source_folder = input("Enter folder path: ")
            if os.path.isdir(source_folder):
                for file in os.listdir(source_folder):
                    source_file = os.path.join(source_folder, file)
                    destination_file = os.path.join(model_path, file)
                    shutil.copy2(source_file, destination_file)
                print(f"Files copied successfully to {model_path}")
            else:
                print("The specified directory does not exist. Please check the path and try again.")

            repeat = input("Do you want to add another fine-tuned model? (yes/no): ").lower()
            if repeat != 'yes':
                break
        elif confirm == 'no':
            break
        else:
            print("Please answer 'yes' or 'no'.")


def ask_if_user_wants_to_add_fine_tuned_xtts_model_or_clone_a_voice():
    while True:
        print("\n1. Clone a new voice")
        print("2. Add a fine-tuned XTTS model to a voice actor")
        print("3. Exit")
        #choice = input("Enter your choice: ")
        choice = "3"

        if choice == '1':
            clone_new_voice()
        elif choice == '2':
            add_fine_tuned_model()
        elif choice == '3':
            print("Exiting the program.")
            break
        else:
            print("Invalid choice. Please try again.")








#fucntion that will use the terminal to change the default language
def select_language_terminal():
    # Default language setting
    default_language = "en"
    language = default_language

    # Ask user to change the language
    #change_lang = input(f"Do you want to change the language(Character accent) from {default_language}? (yes/no): ").strip().lower()
    change_lang = "no"
    if change_lang == "yes":
        # List available languages
        languages = ['en', 'es', 'fr', 'de', 'it', 'pt', 'pl', 'tr', 'ru', 'nl', 'cs', 'ar', 'zh-cn', 'hu', 'ko', 'ja', 'hi']  # Extend as needed
        print("Available languages:")
        for i, lang in enumerate(languages):
            print(f"{i + 1}. {lang}")

        # User selects the language
        while True:
            try:
                choice = int(input("Select a language by number: "))
                language = languages[choice - 1]
                break
            except (IndexError, ValueError):
                print("Invalid selection. Please try again.")

        # Confirm the selection
        confirm = input(f"Confirm changing language to {language}? (yes/no): ").strip().lower()
        if confirm == "yes":
            print(f"Language set to {language}.")
        else:
            print("Language change canceled. Using default English.")
            language = default_language
    else:
        print("No language change requested. Using default English.")

    return language

# Usage example
#selected_language = select_language_terminal()
#print(f"The selected language for TTS is: {selected_language}")




from tqdm import tqdm


# Function to generate audio for the text
def generate_audio():
    ask_if_user_wants_to_add_fine_tuned_xtts_model_or_clone_a_voice()
    selected_tts_model = select_tts_model()
    #This will ask the user in the terminal if they want to generate all of the audio with only the narrerator's voice
    #use_narrator_voice = input("Do you want to generate all audio with the Narrator voice? (yes/no): ").strip().lower()
    use_narrator_voice = "no"
    while use_narrator_voice not in ['yes', 'no']:
        print("Invalid input. Please type 'yes' or 'no'.")
        use_narrator_voice = input("Do you want to generate all audio with the Narrator voice? (yes/no): ").strip().lower()
    use_narrator_voice = use_narrator_voice == 'yes'

    global current_language
    current_language = select_language_terminal()
    # Get device
    start_timez = time.time()
    global multi_voice_model_voice_list1
    global multi_voice_model_voice_list2
    global multi_voice_model_voice_list3
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    global current_model
    global STTS

    
    ensure_temp_folder()

    # List available TTS models
    #print(TTS().list_models())

    # Initialize the TTS model and set the device
    #tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
    # Update the model initialization to use the selected model
    #tts = TTS(selected_tts_model, progress_bar=True).to(device)
    #fast_tts = TTS(multi_voice_model1, progress_bar=True).to(device)
    
    
    
    
    
    random.seed(int(time.time()))
    ensure_output_folder()
    total_rows = len(data)

    chapter_num = 0

    add_voice_actors_to_csv()
    add_languages_to_csv()
    for index, row in tqdm(data.iterrows(), total=data.shape[0], desc="Generating AudioBook"):
        #update_progress(index, total_rows)  # Update progress based on the current index and total rows

        speaker = row['Speaker']
        text = row['Text']
        #update_progress(index, total_rows, text)  # Update progress based on the current index and total rows and text 

        language_code = character_languages.get(speaker, current_language)  # Default to 'en' if not found
        if calibre_installed:
            if "NEWCHAPTERABC" in text:
                chapter_num += 1
                print(f"chapter num: {chapter_num}")
                print(f"CHAPTER KEYWORD IS: NEWCHAPTERABC")
                text = text.replace("NEWCHAPTERABC", "")
        elif CHAPTER_KEYWORD in text.upper():
            chapter_num += 1
            print(f"chapter num: {chapter_num}")
            print(f"CHAPTER KEYWORD IS: {CHAPTER_KEYWORD}")
            
            
        #This is the code for grabbing the current voice actor    
        #This will make it so that if the button for single voice is checked in the gui then the voice actor is always the narrerators:
        if use_narrator_voice:
            print(f"All audio is being generated with the Narrator voice.")
            voice_actor = speaker_voice_map.get("Narrator")
        else:
            voice_actor = speaker_voice_map[speaker]



        #voice_actor = speaker_voice_map[speaker]
        sentences = sent_tokenize(text)
        
        audio_tensors = []
        temp_count =0
        for sentence in sentences:
            fragments = split_long_sentence(sentence)
            for fragment in fragments:
                # Check if the selected model is multilingual
                if 'multilingual' in selected_tts_model:
                    language_code = character_languages.get(speaker, current_language)
                else:
                    language_code = None  # No language specification for non-multilingual models

                print(f"Voice actor: {voice_actor}, {current_language}")
                temp_count = temp_count +1
                # Use the model and language code to generate the audio
                #tts = TTS(model_name="tts_models/en/ek1/tacotron2", progress_bar=False).to(device)
                #tts.tts_to_file(fragment, speaker_wav=list_reference_files(voice_actor), progress_bar=True, file_path=f"Working_files/temp/{temp_count}.wav")
   
                
                    
                
                #this will make it so that if your selecting a model as a voice actor name then itll initalize the voice actor name as the model
                if voice_actor in multi_voice_model_voice_list1:
                    print(f"{voice_actor} is a fast model voice: {multi_voice_model1}")
                    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
                    if current_model !=  multi_voice_model1:
                        fast_tts = TTS(multi_voice_model1, progress_bar=True).to("cpu")
                        current_model = multi_voice_model1
                        print(f"The model used in fast_tts has been changed to {current_model}")
                    fast_tts.tts_to_file(text=fragment, file_path=f"Working_files/temp/{temp_count}.wav", speaker=voice_actor)
                elif voice_actor in multi_voice_model_voice_list2:
                    print(f"{voice_actor} is a fast model voice: {multi_voice_model2}")
                    if current_model !=  multi_voice_model2:
                        fast_tts = TTS(multi_voice_model2, progress_bar=True).to("cpu")
                        current_model = multi_voice_model2
                        print(f"The model used in fast_tts has been changed to {current_model}")
                    fast_tts.tts_to_file(text=fragment, file_path=f"Working_files/temp/{temp_count}.wav", speaker=voice_actor)
                elif voice_actor in multi_voice_model_voice_list3:
                    print(f"{voice_actor} is a fast model voice: {multi_voice_model3}")
                    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
                    if current_model !=  multi_voice_model3:
                        fast_tts = TTS(multi_voice_model3, progress_bar=True).to("cpu")
                        current_model = multi_voice_model3
                        print(f"The model used in fast_tts has been changed to {current_model}")
                    fast_tts.tts_to_file(text=fragment, file_path=f"Working_files/temp/{temp_count}.wav", speaker=voice_actor)
                elif "tts_models" in voice_actor and "multi-dataset" not in voice_actor:
                    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
                    if current_model !=  voice_actor:
                        fast_tts = TTS(voice_actor, progress_bar=True).to(device)
                        current_model = voice_actor
                        print(f"The model used in fast_tts has been changed to {current_model}")
                    #selected_tts_model = voice_actor
                    #"Model is multi-lingual but no `language` is provided."
                    
                    print(f"Model for this character has been switched to: {voice_actor} by user")
                    try:
                        fast_tts.tts_to_file(text=fragment, file_path=f"Working_files/temp/{temp_count}.wav")
                    except ValueError as e:
                        if str(e) == "Model is multi-lingual but no `language` is provided.":
                            print("attempting to correct....")
                            fast_tts.tts_to_file(text=fragment, file_path=f"Working_files/temp/{temp_count}.wav",language=language_code)
                            print("Successfully Corrected!")
                            
                    
                    #else:
                    #   print(f"{voice_actor} is neither multi-dataset nor multilingual")
                    #   tts.tts_to_file(text=fragment,file_path=f"Working_files/temp/{temp_count}.wav")  # Assuming the tts_to_file function has default arguments for unspecified parameters
                
                #If the voice actor has a custom fine tuned xtts model in its refrence folder ie if it has the model folder containing it
                elif os.path.exists(f"tortoise/voices/{voice_actor}/model") and os.path.isdir(f"tortoise/voices/{voice_actor}/model") and 'xtts' in selected_tts_model:
                    speaker_wavz=list_reference_files(voice_actor)
                    fineTune_audio_generate(text=fragment, file_path=f"Working_files/temp/{temp_count}.wav", speaker_wav=speaker_wavz[0], language=language_code, voice_actor=voice_actor)


                # If the model contains both "multilingual" and "multi-dataset"
                elif "multilingual" in selected_tts_model and "multi-dataset" in selected_tts_model:
                    if 'tts' not in locals():
                            tts = TTS(selected_tts_model, progress_bar=True).to(device)

                    try:
                        if "bark" in selected_tts_model:
                            print(f"{selected_tts_model} is bark so multilingual but has no language code")
                            #device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
                            #tts = TTS(selected_tts_model, progress_bar=True).to(device)
                            tts.tts_to_file(text=fragment, file_path=f"Working_files/temp/{temp_count}.wav", speaker_wav=list_reference_files(voice_actor))
                        else:
                            print(f"{selected_tts_model} is multi-dataset and multilingual")
                            #device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
                            
                            #tts = TTS(selected_tts_model, progress_bar=True).to(device)
                            tts.tts_to_file(text=fragment, file_path=f"Working_files/temp/{temp_count}.wav", speaker_wav=list_reference_files(voice_actor), language=language_code)
                    except ValueError as e:
                        if str(e) == "Model is not multi-lingual but `language` is provided.":
                            print("Caught ValueError: Model is not multi-lingual. Ignoring the language parameter.")
                            #device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
                            #tts = TTS(selected_tts_model, progress_bar=True).to(device)
                            tts.tts_to_file(text=fragment, file_path=f"Working_files/temp/{temp_count}.wav", speaker_wav=list_reference_files(voice_actor))

                # If the model only contains "multilingual"
                elif "multilingual" in selected_tts_model:
                    print(f"{selected_tts_model} is multilingual")
                    #device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
                    #tts = TTS(selected_tts_model, progress_bar=True).to(device)
                    if 'tts' not in locals():
                        tts = TTS(selected_tts_model, progress_bar=True).to(device)
                    tts.tts_to_file(text=fragment, file_path=f"Working_files/temp/{temp_count}.wav", language=language_code)

                # If the model only contains "multi-dataset"
                elif "multi-dataset" in selected_tts_model:
                    print(f"{selected_tts_model} is multi-dataset")
                    #device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
                    #tts = TTS(selected_tts_model, progress_bar=True).to(device)
                    if 'tts' not in locals():
                        tts = TTS(selected_tts_model, progress_bar=True).to(device)
                    tts.tts_to_file(text=fragment, file_path=f"Working_files/temp/{temp_count}.wav")
                elif 'StyleTTS2' in selected_tts_model:
                    print(f'{selected_tts_model} model is selected for voice cloning')
                    if 'STTS' not in locals():
                        STTS = stts.StyleTTS2()
                    STTS.inference(fragment, target_voice_path=list_reference_files(voice_actor)[0], output_wav_file=f"Working_files/temp/{temp_count}.wav")

                #if the model selected is one of the fast voice clone models as in not really voice clone but use voice transfer
                #right now im setting all of the fast voice cloning to be run on the cpu come can only be run on cpu and I'm lazy rn lol
                
                elif selected_tts_model in fast_voice_clone_models_dict:
                    print(f"Using voice conversion voice cloning method and the selected model for this is {selected_tts_model}")
                    #device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
                    if current_model !=  selected_tts_model:
                        if "tts" not in locals():
                            #tts = TTS(selected_tts_model).to(device)
                            tts = TTS(selected_tts_model).to("cpu")
                        current_model = selected_tts_model
                    try:
                        tts.tts_with_vc_to_file(
                            fragment,
                            speaker_wav=list_reference_files(voice_actor)[0],
                            file_path=f"Working_files/temp/{temp_count}.wav",
                            speaker=fast_voice_clone_models_dict[selected_tts_model]
                        )
                    except Exception as e:
                        print(f"An error occurred but was ignored: {e}")
                        print("But continuing anyway but you should probs look at that error: its probably that the input for the tts model is too short so idk find a way to fix it if it runs into an issue like this:")
                # If the model contains neither "multilingual" nor "multi-dataset"
                else:
                    print(f"{selected_tts_model} is neither multi-dataset nor multilingual")
                    #device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
                    #tts = TTS(selected_tts_model, progress_bar=True).to(device)
                    if 'tts' not in locals():
                        tts = TTS(selected_tts_model, progress_bar=True).to(device)
                    tts.tts_to_file(text=fragment,file_path=f"Working_files/temp/{temp_count}.wav")  # Assuming the tts_to_file function has default arguments for unspecified parameters

                
                
                
        temp_input_directory = "Working_files/temp"  # Replace with the actual input directory path
        output_directory = "Working_files/generated_audio_clips"  # Replace with the desired output directory path
        combine_wav_files(temp_input_directory, output_directory, f"audio_{index}_{chapter_num}.wav")
        wipe_folder("Working_files/temp")


    end_timez = time.time()
    durationz = end_timez - start_timez
    print("GENERATION TIME:" + str(durationz))

    #root.destroy()






from functools import partial

def format_time(seconds):
    """
    Formats time in seconds to a more readable string with minutes, hours, days, and years if applicable.
    """
    minute = 60
    hour = minute * 60
    day = hour * 24
    year = day * 365

    years = seconds // year
    seconds %= year
    days = seconds // day
    seconds %= day
    hours = seconds // hour
    seconds %= hour
    minutes = seconds // minute
    seconds %= minute

    time_string = ""
    if years > 0:
        time_string += f"{years:.0f} year{'s' if years > 1 else ''} "
    if days > 0:
        time_string += f"{days:.0f} day{'s' if days > 1 else ''} "
    if hours > 0:
        time_string += f"{hours:.0f} hour{'s' if hours > 1 else ''} "
    if minutes > 0:
        time_string += f"{minutes:.0f} min "
    time_string += f"{seconds:.0f} sec"

    return time_string.strip()


def update_progress(index, total, row_text):
    current_time = time.time()
    
    # Calculate elapsed time
    elapsed_time = current_time - start_time

    # Update total characters processed and count of processed rows
    global total_chars_processed, processed_rows_count
    total_chars_processed += len(row_text)
    processed_rows_count += 1
    
    # Calculate progress
    progress = (index + 1) / total * 100

    # Estimate remaining time
    if processed_rows_count > 0:  # Avoid division by zero
        average_chars_per_row = total_chars_processed / processed_rows_count
        estimated_chars_remaining = average_chars_per_row * (total - processed_rows_count)
        average_time_per_char = elapsed_time / total_chars_processed
        estimated_time_remaining = average_time_per_char * estimated_chars_remaining
        remaining_time_string = format_time(estimated_time_remaining)
    else:
        remaining_time_string = "Calculating..."
    
    # Update progress label with estimated time
    progress_label.config(text=f"{progress:.2f}% done ({index+1}/{total} rows) - {remaining_time_string}")
    root.update_idletasks()

# Start time capture and initialize counters
start_time = time.time()
total_chars_processed = 0
processed_rows_count = 0


def create_scrollable_frame(parent, height):
    # Create a canvas with a specific height
    canvas = tk.Canvas(parent, height=height)
    scrollbar = ttk.Scrollbar(parent, orient="vertical", command=canvas.yview)
    
    scrollable_frame = ttk.Frame(canvas)
    canvas.configure(yscrollcommand=scrollbar.set)

    canvas.create_window((0, 0), window=scrollable_frame, anchor="nw")

    scrollable_frame.bind(
        "<Configure>",
        lambda e: canvas.configure(scrollregion=canvas.bbox("all"))
    )

    canvas.pack(side="left", fill="both", expand=True)
    scrollbar.pack(side="right", fill="y")

    return scrollable_frame



def update_chapter_keyword(*args):
    global CHAPTER_KEYWORD
    CHAPTER_KEYWORD = chapter_delimiter_var.get()

# Add a trace to call update_chapter_keyword whenever the value changes
chapter_delimiter_var.trace_add("write", update_chapter_keyword)


## Frame for Language Selection Dropdown
#language_selection_frame = ttk.LabelFrame(root, text="Select TTS Language")
#language_selection_frame.pack(fill="x", expand="yes", padx=10, pady=10)

## Create a dropdown for language selection
#language_var = tk.StringVar()
#language_combobox = ttk.Combobox(language_selection_frame, textvariable=language_var, state="readonly")
#language_combobox['values'] = list(languages.keys())  # Use the display names for the user
#language_combobox.set('English')  # Set default value

#def on_language_selected(event):
#    global current_language
#    # Update the current_language variable based on selection
#    current_language = languages[language_combobox.get()]
#    print(f"current language updated to: {current_language}")

#language_combobox.bind("<<ComboboxSelected>>", on_language_selected)
#language_combobox.pack(side="top", fill="x", expand="yes")

#fuck
## Progress Bar
#progress_var = tk.DoubleVar()
#progress_bar = ttk.Progressbar(root, variable=progress_var, maximum=100)
#progress_bar.pack()
#progress_label = ttk.Label(root, text="0% done")
#progress_label.pack()








## Create a frame to contain the buttons
#buttons_frame = ttk.Frame(root)
#buttons_frame.pack(pady=10)



## Generate Audio Button
#generate_button = ttk.Button(buttons_frame, text="Generate Audio", command=lambda: threading.Thread(target=generate_audio).start())
#generate_button.pack(side=tk.LEFT, padx=5)

#root.mainloop()





generate_audio()
















#this code here will make sure the folder where all the chapter audio files go i whiped before it starts creating the chapter files cause there might be stuff from the last session
import os
import shutil

def wipe_folder(folder_path):
    if os.path.exists(folder_path) and os.path.isdir(folder_path):
        print(f"Folder '{folder_path}' found. Proceeding to wipe...")
        shutil.rmtree(folder_path)
        print(f"Folder '{folder_path}' has been wiped.")
    else:
        print(f"Folder '{folder_path}' does not exist. No action taken.")

# Usage
folder_to_wipe = "Final_combined_output_audio"
wipe_folder(folder_to_wipe)








#this code here will combined all the tiny generated audio files into chapter audio files
import os
import pandas as pd
import torch
import torchaudio
import pygame

colors = ['#FFB6C1', '#ADD8E6', '#FFDAB9', '#98FB98', '#D8BFD8']
speaker_colors = {}
currently_playing = None
INPUT_FOLDER = "Working_files/generated_audio_clips"
OUTPUT_FOLDER = "Final_combined_output_audio"
#marked out cause its not defined earlier on in the code in the field
#SILENCE_DURATION_MS = 0


try:
    pygame.mixer.init()
    print("mixer modual initialized successfully.")
except pygame.error:
    print("mixer modual initialization failed")
    print(pygame.error)


def combine_audio_files(silence_duration_ms):
    folder_path = os.path.join(os.getcwd(), INPUT_FOLDER)
    files = sorted([f for f in os.listdir(folder_path) if f.startswith("audio_") and f.endswith(".wav")], 
                   key=lambda f: (int(f.split('_')[2].split('.')[0]), int(f.split('_')[1].split('.')[0])))
    
    chapter_files = {}
    for file in files:
        chapter_num = int(file.split('_')[2].split('.')[0])
        if chapter_num not in chapter_files:
            chapter_files[chapter_num] = []
        chapter_files[chapter_num].append(file)
    
    for chapter_num, chapter_file_list in chapter_files.items():
        combined_tensor = torch.Tensor()
        for index, file in enumerate(chapter_file_list):
            waveform, sample_rate = torchaudio.load(os.path.join(folder_path, file))
            channels = waveform.shape[0]
            silence_tensor = torch.zeros(channels, int(silence_duration_ms * sample_rate / 1000))
            combined_tensor = torch.cat([combined_tensor, waveform, silence_tensor], dim=1)
            print(f"Processing Chapter {chapter_num} - File {index + 1}/{len(chapter_file_list)}: {file}")

        if not os.path.exists(os.path.join(os.getcwd(), OUTPUT_FOLDER)):
            os.makedirs(os.path.join(os.getcwd(), OUTPUT_FOLDER))

        output_path = os.path.join(os.getcwd(), OUTPUT_FOLDER, f"chapter_{chapter_num}.wav")
        torchaudio.save(output_path, combined_tensor, sample_rate)

    print("Combining audio files complete!")

combine_audio_files(SILENCE_DURATION_MS)

















#this code here will create the actual nicely formatted m4b file with chapters and image metadata and everything located at output audiobook
import os
import subprocess
from pydub import AudioSegment
import shlex

def sort_chapters(file):
    # Extract chapter number from the filename
    number_part = re.findall(r'\d+', file)
    if number_part:
        return int(number_part[0])
    return 0


def extract_ebook_metadata(ebook_file):
    try:
        metadata_cmd = ['ebook-meta', ebook_file]
        metadata_output = subprocess.run(metadata_cmd, capture_output=True, text=True).stdout
        metadata = {}

        # Extracting various metadata fields
        for line in metadata_output.splitlines():
            if ':' in line:
                key, value = line.split(':', 1)
                metadata[key.strip()] = value.strip()

        # Extracting the cover image
        output_image = os.path.join('/tmp', os.path.basename(ebook_file) + '.jpg')
        subprocess.run(['ebook-meta', ebook_file, '--get-cover', output_image], check=True)
        if not os.path.exists(output_image):
            output_image = None

        return output_image, metadata
    except Exception as e:
        print(f"Error extracting eBook metadata: {e}")
        return None, {}

def generate_chapter_metadata(wav_files, metadata_filename):
    with open(metadata_filename, 'w') as file:
        file.write(";FFMETADATA1\n")
        start_time = 0
        for index, wav_file in enumerate(wav_files):
            duration = len(AudioSegment.from_wav(wav_file))
            end_time = start_time + duration
            file.write(f"[CHAPTER]\nTIMEBASE=1/1000\nSTART={start_time}\nEND={end_time}\ntitle=Chapter {index+1:02d}\n")
            start_time = end_time

def combine_wav_to_m4b_ffmpeg(wav_files, m4b_filename, cover_image, metadata_filename, metadata):
    print("Combining WAV files into an M4B audiobook using FFmpeg...")
    with open('file_list.txt', 'w') as file:
        for wav_file in wav_files:
            file.write(f"file '{shlex.quote(wav_file)}'\n")

    ffmpeg_cmd = f"ffmpeg -f concat -safe 0 -i file_list.txt -c copy combined.wav"
    ffmpeg_cmd += f" && ffmpeg -i combined.wav -i {shlex.quote(metadata_filename)}"
    if cover_image:
        ffmpeg_cmd += f" -i {shlex.quote(cover_image)}"

    for key, value in metadata.items():
        ffmpeg_cmd += f" -metadata {key}=\"{value}\""

    ffmpeg_cmd += f" -map_metadata 1"
    if cover_image:
        ffmpeg_cmd += f" -map 0 -map 2"
    ffmpeg_cmd += f" -c:a aac -b:a 192k"
    if cover_image:
        ffmpeg_cmd += f" -c:v copy -disposition:v:0 attached_pic"
    ffmpeg_cmd += f" {shlex.quote(m4b_filename)}"
    os.system(ffmpeg_cmd)
    print(f"M4B audiobook created: {m4b_filename}")

    # Cleanup
    os.remove('file_list.txt')
    if os.path.exists('combined.wav'):
        os.remove('combined.wav')
    os.remove(metadata_filename)
    if cover_image and os.path.exists(cover_image):
        os.remove(cover_image)

def convert_all_wav_to_m4b(input_dir, ebook_file, output_dir, audiobook_name):
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
        print(f"Created output directory: {output_dir}")

    cover_image, ebook_metadata = extract_ebook_metadata(ebook_file)

    wav_files = [os.path.join(input_dir, f) for f in os.listdir(input_dir) if f.endswith('.wav')]
    wav_files.sort(key=sort_chapters)
    m4b_filename = os.path.join(output_dir, f'{audiobook_name}.m4b')
    metadata_filename = 'chapter_metadata.txt'

    # Setting up the metadata
    metadata = {
        'artist': ebook_metadata.get('Author(s)', 'Unknown Author'),
        'album': ebook_metadata.get('Series', 'Unknown Series'), 
        'Title': ebook_metadata.get('Title', f'{audiobook_name}.m4b'),
        'date': ebook_metadata.get('Published', 'Unknown Year'),
        'Genre': ebook_metadata.get('Tags', 'Unknown Genre'),
        'Comment': ebook_metadata.get('Tags', 'No description available.'),
        # Add other metadata fields as needed
    }
    m4b_filename = ebook_metadata.get('Title', f"audiobook_name")
    m4b_filename = os.path.join(output_dir, f'{m4b_filename}.m4b')

    generate_chapter_metadata(wav_files, metadata_filename)
    combine_wav_to_m4b_ffmpeg(wav_files, m4b_filename, cover_image, metadata_filename, metadata)

# Example usage
input_dir = "Final_combined_output_audio"  # Update this path to your WAV files folder
ebook_file = ebook_file_path      # Update this path to your eBook file
output_dir = 'output_audiobooks' 
audiobook_name = os.path.splitext(os.path.basename(ebook_file))[0]                    # Update this path to your desired output directory

convert_all_wav_to_m4b(input_dir, ebook_file, output_dir, audiobook_name)








#this will convert all the audio files into a mp4 format instead of wav to save space
#at the same time it will also delete the wav files as it converts them


from moviepy.editor import *

def convert_wav_to_mp4(wav_filename, mp4_filename):
    audio = AudioFileClip(wav_filename)
    audio.write_audiofile(mp4_filename, codec='aac')

def convert_all_wav_to_mp4():
    output_dir = "Final_combined_output_audio"
    wav_files = [f for f in os.listdir(output_dir) if f.endswith('.wav')]

    for wav_file in wav_files:
        wav_filename = os.path.join(output_dir, wav_file)
        mp4_filename = os.path.join(output_dir, wav_file.replace('.wav', '.mp4'))
        convert_wav_to_mp4(wav_filename, mp4_filename)
        print(f"{wav_filename} has been converted to {mp4_filename}.")
        os.remove(wav_filename)
        print(f"{wav_filename} as been deleted.")

convert_all_wav_to_mp4()







#this will add the cover of the epub file to the mp4 combined files
print("Adding Book Artwork to mp4 chatper files if calibre is installed")

import os
import subprocess

def extract_cover_image_calibre(ebook_file):
    """
    Extracts the cover image from an eBook file using Calibre's ebook-meta tool.

    Args:
    ebook_file (str): The path to the eBook file.

    Returns:
    str: The path to the extracted cover image or None if not found.
    """
    output_image = os.path.join('/tmp', os.path.basename(ebook_file) + '.jpg')
    try:
        subprocess.run(['ebook-meta', ebook_file, '--get-cover', output_image], check=True)
        if os.path.exists(output_image):
            return output_image
        else:
            return None
    except Exception as e:
        print(f"Error extracting cover image: {e}")
        return None

def set_cover_to_mp4(cover_image, mp4_folder):
    """
    Sets the extracted cover image to all mp4 files in a specified folder.

    Args:
    cover_image (str): The path to the cover image.
    mp4_folder (str): The path to the folder containing mp4 files.
    """
    if not cover_image or not os.path.exists(cover_image):
        print("Cover image not found.")
        return

    # Process each mp4 file in the folder
    for file in os.listdir(mp4_folder):
        if file.lower().endswith('.mp4'):
            mp4_path = os.path.join(mp4_folder, file)
            # Set the cover image for the mp4 file
            # Note: Requires ffmpeg
            os.system(f'ffmpeg -i "{mp4_path}" -i "{cover_image}" -map 0 -map 1 -c copy -disposition:v:1 attached_pic "{mp4_path}.temp.mp4"')
            os.rename(f"{mp4_path}.temp.mp4", mp4_path)

# Example usage
ebook_file = ebook_file_path  # Update this path to your eBook file
mp4_folder = OUTPUT_FOLDER  # Update this path to your MP4 folder

#if calibre is installed then set the cover image things
# Extract cover image from the eBook file
cover_image = extract_cover_image_calibre(ebook_file)

# Set cover image to all mp4 files in the specified folder
set_cover_to_mp4(cover_image, mp4_folder)