drizzlezyk's picture
Update app.py
5231271
import os
import requests
import json
import random
import gradio as gr
from PIL import Image
from io import BytesIO
from utils import get_token
def deliver_request(style, desc):
number = random.randint(1, 90) % 3
print("node: ", number)
return generate_figure(style, desc, number)
def generate_figure(style, desc, number):
url_node1 = os.environ["url_node1"]
url_node2 = os.environ["url_node2"]
url_node3 = os.environ["url_node3"]
url_list = [url_node1, url_node2, url_node3]
requests_json = {
"user_name": "huggingface",
"style": style,
"desc": desc
}
headers = {
"Content-Type": "application/json",
"X-Auth-Token": token
}
response = requests.post(url_list[number], json=requests_json, headers=headers, verify=False)
response = json.loads(response.text)
status = response["status"]
assert status == 200
url_list = response["output_image_url"]
image1 = Image.open(BytesIO(requests.get(url_list[0]).content))
image2 = Image.open(BytesIO(requests.get(url_list[1]).content))
image3 = Image.open(BytesIO(requests.get(url_list[2]).content))
image4 = Image.open(BytesIO(requests.get(url_list[3]).content))
return image1, image2, image3, image4
def read_content(file_path: str) -> str:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return content
token = get_token()
examples_style = ["宫崎骏", "新海诚", "梵高", "赛博朋克", "水彩", "莫奈"]
examples_desc = ["城市夜景", "海滩 美景", "一只猫", "摩天大楼", "鸢尾花", "秋水共长天一色"]
css = """
.gradio-container {background-image: url('file=./background.jpg'); background-size:cover; background-repeat: no-repeat;}
#generate {
background: linear-gradient(#D8C5EB, #C5E8EB,#90CCF6);
border: 1px solid #C5E8EB;
border-radius: 8px;
color: #26498B
}
"""
# warm up
generate_figure("梵高", "一只猫", 0)
with gr.Blocks(css=css) as demo:
gr.HTML(read_content("./header.html"))
gr.Markdown("# MindSpore Wukong-Huahua "
"\nWukong-Huahua is a diffusion-based model that perfoms text-to-image task in Chinese, "
"which was developed by the Huawei Noah's Ark Lab in cooperation with "
"the Distributed & Parallel Software Lab and Ascend Product Develop Unit. "
"It was trained on Wukong dataset and used MindSpore + Ascend,"
" a software and hardware solution to implement. Welcome to try Wukong-Huahua by Our Online Platform.")
with gr.Tab("图片生成 (Figure Generation)"):
style_input = gr.Textbox(lines=1,
placeholder="输入中文风格描述",
label="Input the style of figure you want to generate. (use Chinese better)",
elem_id="style-input")
gr.Examples(
examples=examples_style,
inputs=style_input,
)
with gr.Row():
gr.Markdown(" *** ")
desc_input = gr.Textbox(lines=1,
placeholder="输入中文图片描述",
label="Input a sentence to describe the figure you want to generate. "
"(use Chinese better)")
gr.Examples(
examples=examples_desc,
inputs=desc_input,
)
generate_button = gr.Button("Generate", elem_id="generate")
with gr.Row():
img_output1 = gr.Image(type="pil")
img_output2 = gr.Image(type="pil")
img_output3 = gr.Image(type="pil")
img_output4 = gr.Image(type="pil")
with gr.Accordion("Open for More!"):
gr.Markdown("- If you want to know more about the foundation models of MindSpore, please visit "
"[The Foundation Models Platform for Mindspore](https://xihe.mindspore.cn/)")
gr.Markdown("- If you want to know more about MindSpore-related diffusion models, please visit "
"[minddiffusion](https://github.com/mindspore-lab/minddiffusion)")
gr.Markdown("- Try [Wukong-Huahua model on the Foundation Models Platform for Mindspore]"
"(https://xihe.mindspore.cn/modelzoo/wukong)")
generate_button.click(deliver_request,
inputs=[style_input, desc_input],
outputs=[img_output1, img_output2, img_output3, img_output4])
demo.queue(concurrency_count=5)
demo.launch(enable_queue=True)