File size: 3,769 Bytes
fd49d44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import gradio as gr

from timeit import default_timer as timer
from typing import Tuple , Dict
import tensorflow as tf 
import numpy as np
import cv2
from tensorflow.keras.models import load_model
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches

from PIL import Image
import os

# 1.Import and class names setup
IMG_H = 320
IMG_W = 416
NUM_CLASSES = 8
input_shape = (IMG_H,IMG_W,3)


# 2. Model annd transforms prepration
# model = tf.keras.models.load_model(
#     'oct_classification_final_model_lg.keras', custom_objects=None, compile=True, safe_mode=True
# )
model = "AROI_image_segmentation.keras"

# Load the model
  model = load_model(model)
  print(f"The model loaded successfully")
  model.compile(
      loss = 'categorical_crossentropy',
      optimizer = tf.keras.optimizers.Adam(1e-4),
  )

# Load save weights

# 3.prediction function (predict())

def load_and_prep_imgg(image_path , input_shape=[IMG_H,IMG_W], scale=True):
    # if not isinstance(filename, str):
    #     raise ValueError("The filename must be a string representing the file path.")
    # img = tf.io.read_file(filename)
    # img = tf.io.decode_image(img, channels=3)
    # img = tf.image.resize(img, size=[img_shape, img_shape])
    # if scale:
    #     return img / 255
    # else:
    #     return img
    image = cv2.imread(image_path)
    if image is None:
        print(f"Error: Cannot load image from {image_path}")
        return
    image = cv2.resize(image, (input_shape[1], input_shape[0]))  # Resize to input_shape
    image = image / 255.0  # Normalize
    image = image.astype(np.float32)
        
def predict(img) -> Tuple[Dict,float,float] :

  start_time = timer()

  image =  load_and_prep_imgg(img)
  pred_mask = model.predict(np.expand_dims(image, axis=0))  # Add batch dimension
    pred_mask = np.argmax(pred_mask, axis=-1)[0]  # Remove batch dimension and get class labels
    
    # Plot the original image and the predicted mask
    plt.figure(figsize=(10, 5))
    
    # Plot the original image
    plt.subplot(1, 2, 1)
    plt.imshow(image)
    plt.title("Original Image")
    plt.axis("off")

    # Plot the predicted mask
    plt.subplot(1, 2, 2)
    plt.imshow(pred_mask, cmap='jet')  # Use a color map for the predicted mask
    plt.title("Predicted Mask")
    plt.axis("off")

    # Add the colormap legend
    legend_patches = get_legend_patches(colormap, class_names)
    plt.legend(handles=legend_patches, bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0.)
    
    # Display the plot
    plt.tight_layout()
    plt.show()
  #pred_class = class_names[pred_img.argmax()]
  #print(f"Predicted macular diseases is: {pred_class} with probability: {pred_img.max():.2f}")

  pred_probbb = pred_img.max() * 100 

  
  end_time = timer()
  pred_time = round(end_time - start_time , 4)

  return pred_class , pred_probbb , pred_time 

### 4. Gradio app - our Gradio interface + launch command

title = 'Macular Disease Classification'
description = 'Feature Extraction VGG model to classify Macular Diseases by OCT'
article = 'Created with TensorFlow Model Deployment'
# Create example list

example_list = [['examples/'+ example] for example in os.listdir('examples')]
example_list

# create a gradio demo
demo = gr.Interface(fn=predict ,
                    inputs=gr.Image(type='pil'),
                    outputs=[gr.Label(num_top_classes = 3 , label= 'prediction'),
                             gr.Number(label= 'Prediction Probabilities'),
                            gr.Number(label= 'Prediction time (s)')],
                    examples = example_list,
                    title = title,
                    description = description,
                    article= article)

# Launch the demo
demo.launch(debug= False)