Spaces:
Sleeping
Sleeping
drkareemkamal
commited on
Delete app.py
Browse files
app.py
DELETED
@@ -1,115 +0,0 @@
|
|
1 |
-
from langchain_core.prompts import PromptTemplate
|
2 |
-
import os
|
3 |
-
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
4 |
-
from langchain_community.vectorstores import FAISS
|
5 |
-
from langchain_community.llms.ctransformers import CTransformers
|
6 |
-
from langchain.chains.retrieval_qa.base import RetrievalQA
|
7 |
-
import streamlit as st
|
8 |
-
import fitz # PyMuPDF
|
9 |
-
from PIL import Image
|
10 |
-
import io
|
11 |
-
|
12 |
-
DB_FAISS_PATH = 'vectorstores/'
|
13 |
-
pdf_path = 'data/Gale_encyclopedia_of_medicine_vol_1.pdf'
|
14 |
-
|
15 |
-
custom_prompt_template = '''use the following pieces of information to answer the user's questions.
|
16 |
-
If you don't know the answer, please just say that don't know the answer, don't try to make uo an answer.
|
17 |
-
Context : {context}
|
18 |
-
Question : {question}
|
19 |
-
only return the helpful answer below and nothing else.
|
20 |
-
'''
|
21 |
-
|
22 |
-
def set_custom_prompt():
|
23 |
-
"""
|
24 |
-
Prompt template for QA retrieval for vector stores
|
25 |
-
"""
|
26 |
-
prompt = PromptTemplate(template = custom_prompt_template,
|
27 |
-
input_variables = ['context','question'])
|
28 |
-
|
29 |
-
return prompt
|
30 |
-
|
31 |
-
|
32 |
-
def load_llm():
|
33 |
-
llm = CTransformers(
|
34 |
-
model = 'TheBloke/Llama-2-7B-Chat-GGML',
|
35 |
-
model_type = 'llama',
|
36 |
-
max_new_token = 512,
|
37 |
-
temperature = 0.5
|
38 |
-
)
|
39 |
-
return llm
|
40 |
-
|
41 |
-
def retrieval_qa_chain(llm,prompt,db):
|
42 |
-
qa_chain = RetrievalQA.from_chain_type(
|
43 |
-
llm = llm,
|
44 |
-
chain_type = 'stuff',
|
45 |
-
retriever = db.as_retriever(search_kwargs= {'k': 3}),
|
46 |
-
return_source_documents = True,
|
47 |
-
chain_type_kwargs = {'prompt': prompt}
|
48 |
-
)
|
49 |
-
|
50 |
-
return qa_chain
|
51 |
-
|
52 |
-
def qa_bot():
|
53 |
-
embeddings = HuggingFaceBgeEmbeddings(model_name = 'sentence-transformers/all-MiniLM-L6-v2',
|
54 |
-
model_kwargs = {'device':'cpu'})
|
55 |
-
|
56 |
-
|
57 |
-
db = FAISS.load_local(DB_FAISS_PATH, embeddings, allow_dangerous_deserialization=True)
|
58 |
-
llm = load_llm()
|
59 |
-
qa_prompt = set_custom_prompt()
|
60 |
-
qa = retrieval_qa_chain(llm,qa_prompt, db)
|
61 |
-
|
62 |
-
return qa
|
63 |
-
|
64 |
-
def final_result(query):
|
65 |
-
qa_result = qa_bot()
|
66 |
-
response = qa_result({'query' : query})
|
67 |
-
|
68 |
-
return response
|
69 |
-
|
70 |
-
def get_pdf_page_as_image(pdf_path, page_number):
|
71 |
-
document = fitz.open(pdf_path)
|
72 |
-
page = document.load_page(page_number)
|
73 |
-
pix = page.get_pixmap()
|
74 |
-
img = Image.open(io.BytesIO(pix.tobytes()))
|
75 |
-
return img
|
76 |
-
|
77 |
-
# Streamlit webpage title
|
78 |
-
st.title('Medical Chatbot')
|
79 |
-
|
80 |
-
# User input
|
81 |
-
user_query = st.text_input("Please enter your question:")
|
82 |
-
|
83 |
-
# Button to get answer
|
84 |
-
if st.button('Get Answer'):
|
85 |
-
if user_query:
|
86 |
-
# Call the function from your chatbot script
|
87 |
-
response = final_result(user_query)
|
88 |
-
if response:
|
89 |
-
# Displaying the response
|
90 |
-
st.write("### Answer")
|
91 |
-
st.write(response['result'])
|
92 |
-
|
93 |
-
# Displaying source document details if available
|
94 |
-
if 'source_documents' in response:
|
95 |
-
st.write("### Source Document Information")
|
96 |
-
for doc in response['source_documents']:
|
97 |
-
# Retrieve and format page content by replacing '\n' with new line
|
98 |
-
formatted_content = doc.page_content.replace("\\n", "\n")
|
99 |
-
st.write("#### Document Content")
|
100 |
-
st.text_area(label="Page Content", value=formatted_content, height=300)
|
101 |
-
|
102 |
-
# Retrieve source and page from metadata
|
103 |
-
source = doc.metadata['source']
|
104 |
-
page = doc.metadata['page']
|
105 |
-
st.write(f"Source: {source}")
|
106 |
-
st.write(f"Page Number: {page+1}")
|
107 |
-
|
108 |
-
# Display the PDF page as an image
|
109 |
-
pdf_page_image = get_pdf_page_as_image(pdf_path, page)
|
110 |
-
st.image(pdf_page_image, caption=f"Page {page+1} from {source}")
|
111 |
-
|
112 |
-
else:
|
113 |
-
st.write("Sorry, I couldn't find an answer to your question.")
|
114 |
-
else:
|
115 |
-
st.write("Please enter a question to get an answer.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|