drkareemkamal commited on
Commit
8f9fabd
·
verified ·
1 Parent(s): ea7270c

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -115
app.py DELETED
@@ -1,115 +0,0 @@
1
- from langchain_core.prompts import PromptTemplate
2
- import os
3
- from langchain_community.embeddings import HuggingFaceBgeEmbeddings
4
- from langchain_community.vectorstores import FAISS
5
- from langchain_community.llms.ctransformers import CTransformers
6
- from langchain.chains.retrieval_qa.base import RetrievalQA
7
- import streamlit as st
8
- import fitz # PyMuPDF
9
- from PIL import Image
10
- import io
11
-
12
- DB_FAISS_PATH = 'vectorstores/'
13
- pdf_path = 'data/Gale_encyclopedia_of_medicine_vol_1.pdf'
14
-
15
- custom_prompt_template = '''use the following pieces of information to answer the user's questions.
16
- If you don't know the answer, please just say that don't know the answer, don't try to make uo an answer.
17
- Context : {context}
18
- Question : {question}
19
- only return the helpful answer below and nothing else.
20
- '''
21
-
22
- def set_custom_prompt():
23
- """
24
- Prompt template for QA retrieval for vector stores
25
- """
26
- prompt = PromptTemplate(template = custom_prompt_template,
27
- input_variables = ['context','question'])
28
-
29
- return prompt
30
-
31
-
32
- def load_llm():
33
- llm = CTransformers(
34
- model = 'TheBloke/Llama-2-7B-Chat-GGML',
35
- model_type = 'llama',
36
- max_new_token = 512,
37
- temperature = 0.5
38
- )
39
- return llm
40
-
41
- def retrieval_qa_chain(llm,prompt,db):
42
- qa_chain = RetrievalQA.from_chain_type(
43
- llm = llm,
44
- chain_type = 'stuff',
45
- retriever = db.as_retriever(search_kwargs= {'k': 3}),
46
- return_source_documents = True,
47
- chain_type_kwargs = {'prompt': prompt}
48
- )
49
-
50
- return qa_chain
51
-
52
- def qa_bot():
53
- embeddings = HuggingFaceBgeEmbeddings(model_name = 'sentence-transformers/all-MiniLM-L6-v2',
54
- model_kwargs = {'device':'cpu'})
55
-
56
-
57
- db = FAISS.load_local(DB_FAISS_PATH, embeddings, allow_dangerous_deserialization=True)
58
- llm = load_llm()
59
- qa_prompt = set_custom_prompt()
60
- qa = retrieval_qa_chain(llm,qa_prompt, db)
61
-
62
- return qa
63
-
64
- def final_result(query):
65
- qa_result = qa_bot()
66
- response = qa_result({'query' : query})
67
-
68
- return response
69
-
70
- def get_pdf_page_as_image(pdf_path, page_number):
71
- document = fitz.open(pdf_path)
72
- page = document.load_page(page_number)
73
- pix = page.get_pixmap()
74
- img = Image.open(io.BytesIO(pix.tobytes()))
75
- return img
76
-
77
- # Streamlit webpage title
78
- st.title('Medical Chatbot')
79
-
80
- # User input
81
- user_query = st.text_input("Please enter your question:")
82
-
83
- # Button to get answer
84
- if st.button('Get Answer'):
85
- if user_query:
86
- # Call the function from your chatbot script
87
- response = final_result(user_query)
88
- if response:
89
- # Displaying the response
90
- st.write("### Answer")
91
- st.write(response['result'])
92
-
93
- # Displaying source document details if available
94
- if 'source_documents' in response:
95
- st.write("### Source Document Information")
96
- for doc in response['source_documents']:
97
- # Retrieve and format page content by replacing '\n' with new line
98
- formatted_content = doc.page_content.replace("\\n", "\n")
99
- st.write("#### Document Content")
100
- st.text_area(label="Page Content", value=formatted_content, height=300)
101
-
102
- # Retrieve source and page from metadata
103
- source = doc.metadata['source']
104
- page = doc.metadata['page']
105
- st.write(f"Source: {source}")
106
- st.write(f"Page Number: {page+1}")
107
-
108
- # Display the PDF page as an image
109
- pdf_page_image = get_pdf_page_as_image(pdf_path, page)
110
- st.image(pdf_page_image, caption=f"Page {page+1} from {source}")
111
-
112
- else:
113
- st.write("Sorry, I couldn't find an answer to your question.")
114
- else:
115
- st.write("Please enter a question to get an answer.")