Spaces:
Sleeping
Sleeping
=
commited on
Commit
·
2426537
1
Parent(s):
13a4f3e
Update app.py
Browse files
app.py
CHANGED
@@ -3,32 +3,94 @@ import torch
|
|
3 |
from PIL import Image
|
4 |
import os
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
st.title("Pizza & Not Pizza")
|
9 |
|
10 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
11 |
-
checkpoint = torch.load(
|
12 |
model = checkpoint["model"]
|
13 |
classes = checkpoint["classes"]
|
14 |
tran = checkpoint["transform"]
|
15 |
|
16 |
# upload image
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
st.write(label)
|
26 |
-
|
27 |
-
elif taking_picture is not None:
|
28 |
-
img = Image.open(taking_picture)
|
29 |
-
st.image(img, caption="Uploaded Image.", use_column_width=True)
|
30 |
-
label = classify(model, img, tran, classes, device)
|
31 |
-
st.write(label)
|
32 |
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from PIL import Image
|
4 |
import os
|
5 |
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
class Net(nn.Module):
|
11 |
+
|
12 |
+
def __init__(self):
|
13 |
+
super(Net, self).__init__()
|
14 |
+
self.conv1 = nn.Conv2d(3, 32, 5)
|
15 |
+
self.conv2 = nn.Conv2d(32, 64, 5)
|
16 |
+
self.conv3 = nn.Conv2d(64, 128, 5)
|
17 |
+
self.conv4 = nn.Conv2d(128, 256, 5)
|
18 |
+
self.conv5 = nn.Conv2d(256, 512, 5)
|
19 |
+
|
20 |
+
self.fc1 = None
|
21 |
+
self.fc2 = nn.Linear(512, 128)
|
22 |
+
self.fc3 = nn.Linear(128, 64)
|
23 |
+
self.fc4 = nn.Linear(64, 2)
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
x = x.float()
|
27 |
+
""" x = F.relu(self.conv1(x))
|
28 |
+
x = F.relu(self.conv2(x))
|
29 |
+
x = F.max_pool2d(x, 2)
|
30 |
+
x = F.relu(self.conv3(x))
|
31 |
+
x = F.relu(self.conv4(x))
|
32 |
+
x = F.max_pool2d(x, 2)
|
33 |
+
x = F.relu(self.conv5(x))
|
34 |
+
x = F.max_pool2d(x, 2) """
|
35 |
+
|
36 |
+
x = F.max_pool2d(F.relu(self.conv1(x)), 2)
|
37 |
+
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
|
38 |
+
x = F.max_pool2d(F.relu(self.conv3(x)), 2)
|
39 |
+
x = F.max_pool2d(F.relu(self.conv4(x)), 2)
|
40 |
+
x = F.max_pool2d(F.relu(self.conv5(x)), 2)
|
41 |
+
|
42 |
+
#x = x.view(x.size(0), -1)
|
43 |
+
x = torch.flatten(x, 1)
|
44 |
+
|
45 |
+
if self.fc1 is None:
|
46 |
+
self.fc1 = nn.Linear(x.shape[1], 512).to(x.device)
|
47 |
+
|
48 |
+
x = F.relu(self.fc1(x))
|
49 |
+
x = F.relu(self.fc2(x))
|
50 |
+
x = F.relu(self.fc3(x))
|
51 |
+
x = self.fc4(x)
|
52 |
+
return x
|
53 |
+
|
54 |
+
|
55 |
+
def classify(model, img, trans=None, classes=[], device=torch.device("cpu")):
|
56 |
+
try:
|
57 |
+
model = model.eval()
|
58 |
+
img = img.convert("RGB")
|
59 |
+
img = trans(img)
|
60 |
+
img = img.unsqueeze(0)
|
61 |
+
img = img.to(device)
|
62 |
+
|
63 |
+
output = model(img)
|
64 |
+
_, pred = torch.max(output, 1)
|
65 |
+
procent = torch.sigmoid(output)
|
66 |
+
|
67 |
+
return f"It {classes[pred.item()].replace('_', ' ')}, I'm {procent[0][pred[0]]*100:.2f}% sure"
|
68 |
+
except Exception:
|
69 |
+
return "Something went wrong😕, please notify the developer with the following message: " + str(Exception)
|
70 |
|
71 |
st.title("Pizza & Not Pizza")
|
72 |
|
73 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
74 |
+
checkpoint = torch.load("best.pth.tar", map_location=device)
|
75 |
model = checkpoint["model"]
|
76 |
classes = checkpoint["classes"]
|
77 |
tran = checkpoint["transform"]
|
78 |
|
79 |
# upload image
|
80 |
+
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
|
81 |
+
taking_picture = st.camera_input("Take a picture...")
|
82 |
+
|
83 |
+
if uploaded_file is not None:
|
84 |
+
img = Image.open(uploaded_file)
|
85 |
+
st.image(img, caption="Uploaded Image.", use_column_width=True)
|
86 |
+
label = classify(model, img, tran, classes, device)
|
87 |
+
st.write(label)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
elif taking_picture is not None:
|
90 |
+
img = Image.open(taking_picture)
|
91 |
+
st.image(img, caption="Uploaded Image.", use_column_width=True)
|
92 |
+
label = classify(model, img, tran, classes, device)
|
93 |
+
st.write(label)
|
94 |
+
|
95 |
+
else:
|
96 |
+
pass
|