Fabrice-TIERCELIN
commited on
Add logs
Browse files- gradio_demo.py +27 -14
gradio_demo.py
CHANGED
@@ -72,19 +72,30 @@ def stage1_process(input_image, gamma_correction):
|
|
72 |
if torch.cuda.device_count() == 0:
|
73 |
gr.Warning('Set this space to GPU config to make it work.')
|
74 |
return None
|
|
|
75 |
torch.cuda.set_device(SUPIR_device)
|
|
|
76 |
LQ = HWC3(input_image)
|
|
|
77 |
LQ = fix_resize(LQ, 512)
|
|
|
78 |
# stage1
|
79 |
LQ = np.array(LQ) / 255 * 2 - 1
|
|
|
80 |
LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
|
|
|
81 |
LQ = model.batchify_denoise(LQ, is_stage1=True)
|
|
|
82 |
LQ = (LQ[0].permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().round().clip(0, 255).astype(np.uint8)
|
83 |
# gamma correction
|
84 |
LQ = LQ / 255.0
|
|
|
85 |
LQ = np.power(LQ, gamma_correction)
|
|
|
86 |
LQ *= 255.0
|
|
|
87 |
LQ = LQ.round().clip(0, 255).astype(np.uint8)
|
|
|
88 |
return LQ
|
89 |
|
90 |
@spaces.GPU(duration=120)
|
@@ -165,6 +176,7 @@ def stage2_process(input_image, prompt, a_prompt, n_prompt, num_samples, upscale
|
|
165 |
Image.fromarray(result).save(f'./history/{event_id[:5]}/{event_id[5:]}/HQ_{i}.png')
|
166 |
return [input_image] + results, event_id, 3, ''
|
167 |
|
|
|
168 |
def load_and_reset(param_setting):
|
169 |
if torch.cuda.device_count() == 0:
|
170 |
gr.Warning('Set this space to GPU config to make it work.')
|
@@ -215,7 +227,7 @@ if torch.cuda.device_count() == 0:
|
|
215 |
|
216 |
<p style="background-color: red;"><big><big><big><b>⚠️To use SUPIR, <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR?duplicate=true">Duplicate this space</a> and set a GPU with 30 GB VRAM.</b>
|
217 |
|
218 |
-
You can't use SUPIR directly here because this space runs on a CPU, which not enough for SUPIR. This is a template space. Please provide feedback if you have issues.
|
219 |
</big></big></big></p>
|
220 |
"""
|
221 |
else:
|
@@ -224,8 +236,8 @@ else:
|
|
224 |
|
225 |
⚠️SUPIR is still a research project under tested and is not yet a stable commercial product.
|
226 |
|
227 |
-
<a href="https://arxiv.org/abs/2401.13627">Paper</a>   <a href="http://supir.xpixel.group/">Project Page</a>   <a href="https://github.com/Fanghua-Yu/SUPIR/blob/master/assets/DemoGuide.png">How to play</a>
|
228 |
-
<p style="background-color:
|
229 |
"""
|
230 |
|
231 |
|
@@ -243,6 +255,7 @@ The service is a research preview intended for non-commercial use only, subject
|
|
243 |
with gr.Blocks(title='SUPIR') as interface:
|
244 |
with gr.Row():
|
245 |
gr.HTML(title_md)
|
|
|
246 |
with gr.Row():
|
247 |
with gr.Column():
|
248 |
with gr.Row(equal_height=True):
|
@@ -250,11 +263,11 @@ with gr.Blocks(title='SUPIR') as interface:
|
|
250 |
gr.Markdown("<center>Input</center>")
|
251 |
input_image = gr.Image(type="numpy", elem_id="image-input", height=400, width=400)
|
252 |
with gr.Column():
|
253 |
-
gr.Markdown("<center>
|
254 |
denoise_image = gr.Image(type="numpy", elem_id="image-s1", height=400, width=400)
|
255 |
-
prompt = gr.Textbox(label="
|
256 |
|
257 |
-
with gr.Accordion("
|
258 |
gamma_correction = gr.Slider(label="Gamma Correction", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
|
259 |
|
260 |
with gr.Accordion("LLaVA options", open=False):
|
@@ -262,15 +275,15 @@ with gr.Blocks(title='SUPIR') as interface:
|
|
262 |
top_p = gr.Slider(label="Top P", info = "Percent of tokens shortlisted", minimum=0., maximum=1.0, value=0.7, step=0.1)
|
263 |
qs = gr.Textbox(label="Question", info="Describe the image and its style in a very detailed manner", placeholder="The image is a realistic photography, not an art painting.")
|
264 |
|
265 |
-
with gr.Accordion("
|
266 |
num_samples = gr.Slider(label="Num Samples", info="Number of generated results; I discourage to increase because the process is limited to 2 min", minimum=1, maximum=4 if not args.use_image_slider else 1
|
267 |
, value=1, step=1)
|
268 |
upscale = gr.Slider(label="Upscale", info="The resolution increase factor", minimum=1, maximum=8, value=1, step=1)
|
269 |
edm_steps = gr.Slider(label="Steps", info="lower=faster, higher=more details", minimum=1, maximum=200, value=default_setting.edm_steps if torch.cuda.device_count() > 0 else 1, step=1)
|
270 |
s_cfg = gr.Slider(label="Text Guidance Scale", info="lower=follow the image, higher=follow the prompt", minimum=1.0, maximum=15.0,
|
271 |
value=default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.1)
|
272 |
-
s_stage2 = gr.Slider(label="
|
273 |
-
s_stage1 = gr.Slider(label="
|
274 |
seed = gr.Slider(label="Seed", info="-1=Different each time, other=Reproducible", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
275 |
s_churn = gr.Slider(label="S-Churn", minimum=0, maximum=40, value=5, step=1)
|
276 |
s_noise = gr.Slider(label="S-Noise", minimum=1.0, maximum=1.1, value=1.003, step=0.001)
|
@@ -292,7 +305,7 @@ with gr.Blocks(title='SUPIR') as interface:
|
|
292 |
spt_linear_CFG = gr.Slider(label="CFG Start", minimum=1.0,
|
293 |
maximum=9.0, value=default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.5)
|
294 |
with gr.Column():
|
295 |
-
linear_s_stage2 = gr.Checkbox(label="Linear
|
296 |
spt_linear_s_stage2 = gr.Slider(label="Guidance Start", minimum=0.,
|
297 |
maximum=1., value=0., step=0.05)
|
298 |
with gr.Row():
|
@@ -310,18 +323,18 @@ with gr.Blocks(title='SUPIR') as interface:
|
|
310 |
interactive=True)
|
311 |
|
312 |
with gr.Column():
|
313 |
-
gr.Markdown("<center>
|
314 |
if not args.use_image_slider:
|
315 |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery1")
|
316 |
else:
|
317 |
result_gallery = ImageSlider(label='Output', show_label=False, elem_id="gallery1")
|
318 |
with gr.Row():
|
319 |
with gr.Column():
|
320 |
-
denoise_button = gr.Button(value="
|
321 |
with gr.Column():
|
322 |
-
llave_button = gr.Button(value="LlaVa
|
323 |
with gr.Column():
|
324 |
-
diffusion_button = gr.Button(value="
|
325 |
with gr.Row():
|
326 |
with gr.Column():
|
327 |
param_setting = gr.Radio(["Quality", "Fidelity"], interactive=True, label="Param Setting", value="Quality")
|
|
|
72 |
if torch.cuda.device_count() == 0:
|
73 |
gr.Warning('Set this space to GPU config to make it work.')
|
74 |
return None
|
75 |
+
print ("stage1_process 1")
|
76 |
torch.cuda.set_device(SUPIR_device)
|
77 |
+
print ("stage1_process 2")
|
78 |
LQ = HWC3(input_image)
|
79 |
+
print ("stage1_process 3")
|
80 |
LQ = fix_resize(LQ, 512)
|
81 |
+
print ("stage1_process 4")
|
82 |
# stage1
|
83 |
LQ = np.array(LQ) / 255 * 2 - 1
|
84 |
+
print ("stage1_process 5")
|
85 |
LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
|
86 |
+
print ("stage1_process 6")
|
87 |
LQ = model.batchify_denoise(LQ, is_stage1=True)
|
88 |
+
print ("stage1_process 7")
|
89 |
LQ = (LQ[0].permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().round().clip(0, 255).astype(np.uint8)
|
90 |
# gamma correction
|
91 |
LQ = LQ / 255.0
|
92 |
+
print ("stage1_process 8")
|
93 |
LQ = np.power(LQ, gamma_correction)
|
94 |
+
print ("stage1_process 9")
|
95 |
LQ *= 255.0
|
96 |
+
print ("stage1_process 10")
|
97 |
LQ = LQ.round().clip(0, 255).astype(np.uint8)
|
98 |
+
print ("stage1_process 11")
|
99 |
return LQ
|
100 |
|
101 |
@spaces.GPU(duration=120)
|
|
|
176 |
Image.fromarray(result).save(f'./history/{event_id[:5]}/{event_id[5:]}/HQ_{i}.png')
|
177 |
return [input_image] + results, event_id, 3, ''
|
178 |
|
179 |
+
@spaces.GPU(duration=120)
|
180 |
def load_and_reset(param_setting):
|
181 |
if torch.cuda.device_count() == 0:
|
182 |
gr.Warning('Set this space to GPU config to make it work.')
|
|
|
227 |
|
228 |
<p style="background-color: red;"><big><big><big><b>⚠️To use SUPIR, <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR?duplicate=true">Duplicate this space</a> and set a GPU with 30 GB VRAM.</b>
|
229 |
|
230 |
+
You can't use SUPIR directly here because this space runs on a CPU, which is not enough for SUPIR. This is a template space. Please provide feedback if you have issues.
|
231 |
</big></big></big></p>
|
232 |
"""
|
233 |
else:
|
|
|
236 |
|
237 |
⚠️SUPIR is still a research project under tested and is not yet a stable commercial product.
|
238 |
|
239 |
+
<a href="https://arxiv.org/abs/2401.13627">Paper</a>   <a href="http://supir.xpixel.group/">Project Page</a>   <a href="https://github.com/Fanghua-Yu/SUPIR/blob/master/assets/DemoGuide.png">How to play</a>   <a href="https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai">Local Install Guide</a>
|
240 |
+
<p style="background-color: blue;">For now, only the stage 2 is working (the most important one). The stage 1 and LLaVa are failing. LLaVa is disabled.</p>
|
241 |
"""
|
242 |
|
243 |
|
|
|
255 |
with gr.Blocks(title='SUPIR') as interface:
|
256 |
with gr.Row():
|
257 |
gr.HTML(title_md)
|
258 |
+
|
259 |
with gr.Row():
|
260 |
with gr.Column():
|
261 |
with gr.Row(equal_height=True):
|
|
|
263 |
gr.Markdown("<center>Input</center>")
|
264 |
input_image = gr.Image(type="numpy", elem_id="image-input", height=400, width=400)
|
265 |
with gr.Column():
|
266 |
+
gr.Markdown("<center>Pre-denoising Output</center>")
|
267 |
denoise_image = gr.Image(type="numpy", elem_id="image-s1", height=400, width=400)
|
268 |
+
prompt = gr.Textbox(label="Image description", value="", placeholder="A person, walking, in a town, Summer, photorealistic")
|
269 |
|
270 |
+
with gr.Accordion("Pre-denoising options", open=False):
|
271 |
gamma_correction = gr.Slider(label="Gamma Correction", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
|
272 |
|
273 |
with gr.Accordion("LLaVA options", open=False):
|
|
|
275 |
top_p = gr.Slider(label="Top P", info = "Percent of tokens shortlisted", minimum=0., maximum=1.0, value=0.7, step=0.1)
|
276 |
qs = gr.Textbox(label="Question", info="Describe the image and its style in a very detailed manner", placeholder="The image is a realistic photography, not an art painting.")
|
277 |
|
278 |
+
with gr.Accordion("Restoring options", open=False):
|
279 |
num_samples = gr.Slider(label="Num Samples", info="Number of generated results; I discourage to increase because the process is limited to 2 min", minimum=1, maximum=4 if not args.use_image_slider else 1
|
280 |
, value=1, step=1)
|
281 |
upscale = gr.Slider(label="Upscale", info="The resolution increase factor", minimum=1, maximum=8, value=1, step=1)
|
282 |
edm_steps = gr.Slider(label="Steps", info="lower=faster, higher=more details", minimum=1, maximum=200, value=default_setting.edm_steps if torch.cuda.device_count() > 0 else 1, step=1)
|
283 |
s_cfg = gr.Slider(label="Text Guidance Scale", info="lower=follow the image, higher=follow the prompt", minimum=1.0, maximum=15.0,
|
284 |
value=default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.1)
|
285 |
+
s_stage2 = gr.Slider(label="Restoring Guidance Strength", minimum=0., maximum=1., value=1., step=0.05)
|
286 |
+
s_stage1 = gr.Slider(label="Pre-denoising Guidance Strength", minimum=-1.0, maximum=6.0, value=-1.0, step=1.0)
|
287 |
seed = gr.Slider(label="Seed", info="-1=Different each time, other=Reproducible", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
288 |
s_churn = gr.Slider(label="S-Churn", minimum=0, maximum=40, value=5, step=1)
|
289 |
s_noise = gr.Slider(label="S-Noise", minimum=1.0, maximum=1.1, value=1.003, step=0.001)
|
|
|
305 |
spt_linear_CFG = gr.Slider(label="CFG Start", minimum=1.0,
|
306 |
maximum=9.0, value=default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.5)
|
307 |
with gr.Column():
|
308 |
+
linear_s_stage2 = gr.Checkbox(label="Linear Restoring Guidance", value=False)
|
309 |
spt_linear_s_stage2 = gr.Slider(label="Guidance Start", minimum=0.,
|
310 |
maximum=1., value=0., step=0.05)
|
311 |
with gr.Row():
|
|
|
323 |
interactive=True)
|
324 |
|
325 |
with gr.Column():
|
326 |
+
gr.Markdown("<center>Restoring Output</center>")
|
327 |
if not args.use_image_slider:
|
328 |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery1")
|
329 |
else:
|
330 |
result_gallery = ImageSlider(label='Output', show_label=False, elem_id="gallery1")
|
331 |
with gr.Row():
|
332 |
with gr.Column():
|
333 |
+
denoise_button = gr.Button(value="Pre-denoise (KO)")
|
334 |
with gr.Column():
|
335 |
+
llave_button = gr.Button(value="Auto-generate description (LlaVa)")
|
336 |
with gr.Column():
|
337 |
+
diffusion_button = gr.Button(value="🚀 Restore", variant = "primary")
|
338 |
with gr.Row():
|
339 |
with gr.Column():
|
340 |
param_setting = gr.Radio(["Quality", "Fidelity"], interactive=True, label="Param Setting", value="Quality")
|