Fabrice-TIERCELIN
commited on
Upload SUPIR_v0.py
Browse files- SUPIR/modules/SUPIR_v0.py +718 -0
SUPIR/modules/SUPIR_v0.py
ADDED
@@ -0,0 +1,718 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from einops._torch_specific import allow_ops_in_compiled_graph
|
2 |
+
# allow_ops_in_compiled_graph()
|
3 |
+
import einops
|
4 |
+
import torch
|
5 |
+
import torch as th
|
6 |
+
import torch.nn as nn
|
7 |
+
from einops import rearrange, repeat
|
8 |
+
|
9 |
+
from sgm.modules.diffusionmodules.util import (
|
10 |
+
avg_pool_nd,
|
11 |
+
checkpoint,
|
12 |
+
conv_nd,
|
13 |
+
linear,
|
14 |
+
normalization,
|
15 |
+
timestep_embedding,
|
16 |
+
zero_module,
|
17 |
+
)
|
18 |
+
|
19 |
+
from sgm.modules.diffusionmodules.openaimodel import Downsample, Upsample, UNetModel, Timestep, \
|
20 |
+
TimestepEmbedSequential, ResBlock, AttentionBlock, TimestepBlock
|
21 |
+
from sgm.modules.attention import SpatialTransformer, MemoryEfficientCrossAttention, CrossAttention
|
22 |
+
from sgm.util import default, log_txt_as_img, exists, instantiate_from_config
|
23 |
+
import re
|
24 |
+
import torch
|
25 |
+
from functools import partial
|
26 |
+
|
27 |
+
|
28 |
+
try:
|
29 |
+
import xformers
|
30 |
+
import xformers.ops
|
31 |
+
XFORMERS_IS_AVAILBLE = True
|
32 |
+
except:
|
33 |
+
XFORMERS_IS_AVAILBLE = False
|
34 |
+
|
35 |
+
|
36 |
+
# dummy replace
|
37 |
+
def convert_module_to_f16(x):
|
38 |
+
pass
|
39 |
+
|
40 |
+
|
41 |
+
def convert_module_to_f32(x):
|
42 |
+
pass
|
43 |
+
|
44 |
+
|
45 |
+
class ZeroConv(nn.Module):
|
46 |
+
def __init__(self, label_nc, norm_nc, mask=False):
|
47 |
+
super().__init__()
|
48 |
+
self.zero_conv = zero_module(conv_nd(2, label_nc, norm_nc, 1, 1, 0))
|
49 |
+
self.mask = mask
|
50 |
+
|
51 |
+
def forward(self, c, h, h_ori=None):
|
52 |
+
# with torch.cuda.amp.autocast(enabled=False, dtype=torch.float32):
|
53 |
+
if not self.mask:
|
54 |
+
h = h + self.zero_conv(c)
|
55 |
+
else:
|
56 |
+
h = h + self.zero_conv(c) * torch.zeros_like(h)
|
57 |
+
if h_ori is not None:
|
58 |
+
h = th.cat([h_ori, h], dim=1)
|
59 |
+
return h
|
60 |
+
|
61 |
+
|
62 |
+
class ZeroSFT(nn.Module):
|
63 |
+
def __init__(self, label_nc, norm_nc, concat_channels=0, norm=True, mask=False):
|
64 |
+
super().__init__()
|
65 |
+
|
66 |
+
# param_free_norm_type = str(parsed.group(1))
|
67 |
+
ks = 3
|
68 |
+
pw = ks // 2
|
69 |
+
|
70 |
+
self.norm = norm
|
71 |
+
if self.norm:
|
72 |
+
self.param_free_norm = normalization(norm_nc + concat_channels)
|
73 |
+
else:
|
74 |
+
self.param_free_norm = nn.Identity()
|
75 |
+
|
76 |
+
nhidden = 128
|
77 |
+
|
78 |
+
self.mlp_shared = nn.Sequential(
|
79 |
+
nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=pw),
|
80 |
+
nn.SiLU()
|
81 |
+
)
|
82 |
+
self.zero_mul = zero_module(nn.Conv2d(nhidden, norm_nc + concat_channels, kernel_size=ks, padding=pw))
|
83 |
+
self.zero_add = zero_module(nn.Conv2d(nhidden, norm_nc + concat_channels, kernel_size=ks, padding=pw))
|
84 |
+
# self.zero_mul = nn.Conv2d(nhidden, norm_nc + concat_channels, kernel_size=ks, padding=pw)
|
85 |
+
# self.zero_add = nn.Conv2d(nhidden, norm_nc + concat_channels, kernel_size=ks, padding=pw)
|
86 |
+
|
87 |
+
self.zero_conv = zero_module(conv_nd(2, label_nc, norm_nc, 1, 1, 0))
|
88 |
+
self.pre_concat = bool(concat_channels != 0)
|
89 |
+
self.mask = mask
|
90 |
+
|
91 |
+
def forward(self, c, h, h_ori=None, control_scale=1):
|
92 |
+
assert self.mask is False
|
93 |
+
if h_ori is not None and self.pre_concat:
|
94 |
+
h_raw = th.cat([h_ori, h], dim=1)
|
95 |
+
else:
|
96 |
+
h_raw = h
|
97 |
+
|
98 |
+
if self.mask:
|
99 |
+
h = h + self.zero_conv(c) * torch.zeros_like(h)
|
100 |
+
else:
|
101 |
+
h = h + self.zero_conv(c)
|
102 |
+
if h_ori is not None and self.pre_concat:
|
103 |
+
h = th.cat([h_ori, h], dim=1)
|
104 |
+
actv = self.mlp_shared(c)
|
105 |
+
gamma = self.zero_mul(actv)
|
106 |
+
beta = self.zero_add(actv)
|
107 |
+
if self.mask:
|
108 |
+
gamma = gamma * torch.zeros_like(gamma)
|
109 |
+
beta = beta * torch.zeros_like(beta)
|
110 |
+
h = self.param_free_norm(h) * (gamma + 1) + beta
|
111 |
+
if h_ori is not None and not self.pre_concat:
|
112 |
+
h = th.cat([h_ori, h], dim=1)
|
113 |
+
return h * control_scale + h_raw * (1 - control_scale)
|
114 |
+
|
115 |
+
|
116 |
+
class ZeroCrossAttn(nn.Module):
|
117 |
+
ATTENTION_MODES = {
|
118 |
+
"softmax": CrossAttention, # vanilla attention
|
119 |
+
"softmax-xformers": MemoryEfficientCrossAttention
|
120 |
+
}
|
121 |
+
|
122 |
+
def __init__(self, context_dim, query_dim, zero_out=True, mask=False):
|
123 |
+
super().__init__()
|
124 |
+
attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
|
125 |
+
assert attn_mode in self.ATTENTION_MODES
|
126 |
+
attn_cls = self.ATTENTION_MODES[attn_mode]
|
127 |
+
self.attn = attn_cls(query_dim=query_dim, context_dim=context_dim, heads=query_dim//64, dim_head=64)
|
128 |
+
self.norm1 = normalization(query_dim)
|
129 |
+
self.norm2 = normalization(context_dim)
|
130 |
+
|
131 |
+
self.mask = mask
|
132 |
+
|
133 |
+
# if zero_out:
|
134 |
+
# # for p in self.attn.to_out.parameters():
|
135 |
+
# # p.detach().zero_()
|
136 |
+
# self.attn.to_out = zero_module(self.attn.to_out)
|
137 |
+
|
138 |
+
def forward(self, context, x, control_scale=1):
|
139 |
+
assert self.mask is False
|
140 |
+
x_in = x
|
141 |
+
x = self.norm1(x)
|
142 |
+
context = self.norm2(context)
|
143 |
+
b, c, h, w = x.shape
|
144 |
+
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
145 |
+
context = rearrange(context, 'b c h w -> b (h w) c').contiguous()
|
146 |
+
x = self.attn(x, context)
|
147 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
148 |
+
if self.mask:
|
149 |
+
x = x * torch.zeros_like(x)
|
150 |
+
x = x_in + x * control_scale
|
151 |
+
|
152 |
+
return x
|
153 |
+
|
154 |
+
|
155 |
+
class GLVControl(nn.Module):
|
156 |
+
def __init__(
|
157 |
+
self,
|
158 |
+
in_channels,
|
159 |
+
model_channels,
|
160 |
+
out_channels,
|
161 |
+
num_res_blocks,
|
162 |
+
attention_resolutions,
|
163 |
+
dropout=0,
|
164 |
+
channel_mult=(1, 2, 4, 8),
|
165 |
+
conv_resample=True,
|
166 |
+
dims=2,
|
167 |
+
num_classes=None,
|
168 |
+
use_checkpoint=False,
|
169 |
+
use_fp16=False,
|
170 |
+
num_heads=-1,
|
171 |
+
num_head_channels=-1,
|
172 |
+
num_heads_upsample=-1,
|
173 |
+
use_scale_shift_norm=False,
|
174 |
+
resblock_updown=False,
|
175 |
+
use_new_attention_order=False,
|
176 |
+
use_spatial_transformer=False, # custom transformer support
|
177 |
+
transformer_depth=1, # custom transformer support
|
178 |
+
context_dim=None, # custom transformer support
|
179 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
180 |
+
legacy=True,
|
181 |
+
disable_self_attentions=None,
|
182 |
+
num_attention_blocks=None,
|
183 |
+
disable_middle_self_attn=False,
|
184 |
+
use_linear_in_transformer=False,
|
185 |
+
spatial_transformer_attn_type="softmax",
|
186 |
+
adm_in_channels=None,
|
187 |
+
use_fairscale_checkpoint=False,
|
188 |
+
offload_to_cpu=False,
|
189 |
+
transformer_depth_middle=None,
|
190 |
+
input_upscale=1,
|
191 |
+
):
|
192 |
+
super().__init__()
|
193 |
+
from omegaconf.listconfig import ListConfig
|
194 |
+
|
195 |
+
if use_spatial_transformer:
|
196 |
+
assert (
|
197 |
+
context_dim is not None
|
198 |
+
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
|
199 |
+
|
200 |
+
if context_dim is not None:
|
201 |
+
assert (
|
202 |
+
use_spatial_transformer
|
203 |
+
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
|
204 |
+
if type(context_dim) == ListConfig:
|
205 |
+
context_dim = list(context_dim)
|
206 |
+
|
207 |
+
if num_heads_upsample == -1:
|
208 |
+
num_heads_upsample = num_heads
|
209 |
+
|
210 |
+
if num_heads == -1:
|
211 |
+
assert (
|
212 |
+
num_head_channels != -1
|
213 |
+
), "Either num_heads or num_head_channels has to be set"
|
214 |
+
|
215 |
+
if num_head_channels == -1:
|
216 |
+
assert (
|
217 |
+
num_heads != -1
|
218 |
+
), "Either num_heads or num_head_channels has to be set"
|
219 |
+
|
220 |
+
self.in_channels = in_channels
|
221 |
+
self.model_channels = model_channels
|
222 |
+
self.out_channels = out_channels
|
223 |
+
if isinstance(transformer_depth, int):
|
224 |
+
transformer_depth = len(channel_mult) * [transformer_depth]
|
225 |
+
elif isinstance(transformer_depth, ListConfig):
|
226 |
+
transformer_depth = list(transformer_depth)
|
227 |
+
transformer_depth_middle = default(
|
228 |
+
transformer_depth_middle, transformer_depth[-1]
|
229 |
+
)
|
230 |
+
|
231 |
+
if isinstance(num_res_blocks, int):
|
232 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
233 |
+
else:
|
234 |
+
if len(num_res_blocks) != len(channel_mult):
|
235 |
+
raise ValueError(
|
236 |
+
"provide num_res_blocks either as an int (globally constant) or "
|
237 |
+
"as a list/tuple (per-level) with the same length as channel_mult"
|
238 |
+
)
|
239 |
+
self.num_res_blocks = num_res_blocks
|
240 |
+
# self.num_res_blocks = num_res_blocks
|
241 |
+
if disable_self_attentions is not None:
|
242 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
243 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
244 |
+
if num_attention_blocks is not None:
|
245 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
246 |
+
assert all(
|
247 |
+
map(
|
248 |
+
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
249 |
+
range(len(num_attention_blocks)),
|
250 |
+
)
|
251 |
+
)
|
252 |
+
print(
|
253 |
+
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
254 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
255 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
256 |
+
f"attention will still not be set."
|
257 |
+
) # todo: convert to warning
|
258 |
+
|
259 |
+
self.attention_resolutions = attention_resolutions
|
260 |
+
self.dropout = dropout
|
261 |
+
self.channel_mult = channel_mult
|
262 |
+
self.conv_resample = conv_resample
|
263 |
+
self.num_classes = num_classes
|
264 |
+
self.use_checkpoint = use_checkpoint
|
265 |
+
if use_fp16:
|
266 |
+
print("WARNING: use_fp16 was dropped and has no effect anymore.")
|
267 |
+
# self.dtype = th.float16 if use_fp16 else th.float32
|
268 |
+
self.num_heads = num_heads
|
269 |
+
self.num_head_channels = num_head_channels
|
270 |
+
self.num_heads_upsample = num_heads_upsample
|
271 |
+
self.predict_codebook_ids = n_embed is not None
|
272 |
+
|
273 |
+
assert use_fairscale_checkpoint != use_checkpoint or not (
|
274 |
+
use_checkpoint or use_fairscale_checkpoint
|
275 |
+
)
|
276 |
+
|
277 |
+
self.use_fairscale_checkpoint = False
|
278 |
+
checkpoint_wrapper_fn = (
|
279 |
+
partial(checkpoint_wrapper, offload_to_cpu=offload_to_cpu)
|
280 |
+
if self.use_fairscale_checkpoint
|
281 |
+
else lambda x: x
|
282 |
+
)
|
283 |
+
|
284 |
+
time_embed_dim = model_channels * 4
|
285 |
+
self.time_embed = checkpoint_wrapper_fn(
|
286 |
+
nn.Sequential(
|
287 |
+
linear(model_channels, time_embed_dim),
|
288 |
+
nn.SiLU(),
|
289 |
+
linear(time_embed_dim, time_embed_dim),
|
290 |
+
)
|
291 |
+
)
|
292 |
+
|
293 |
+
if self.num_classes is not None:
|
294 |
+
if isinstance(self.num_classes, int):
|
295 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
296 |
+
elif self.num_classes == "continuous":
|
297 |
+
print("setting up linear c_adm embedding layer")
|
298 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
299 |
+
elif self.num_classes == "timestep":
|
300 |
+
self.label_emb = checkpoint_wrapper_fn(
|
301 |
+
nn.Sequential(
|
302 |
+
Timestep(model_channels),
|
303 |
+
nn.Sequential(
|
304 |
+
linear(model_channels, time_embed_dim),
|
305 |
+
nn.SiLU(),
|
306 |
+
linear(time_embed_dim, time_embed_dim),
|
307 |
+
),
|
308 |
+
)
|
309 |
+
)
|
310 |
+
elif self.num_classes == "sequential":
|
311 |
+
assert adm_in_channels is not None
|
312 |
+
self.label_emb = nn.Sequential(
|
313 |
+
nn.Sequential(
|
314 |
+
linear(adm_in_channels, time_embed_dim),
|
315 |
+
nn.SiLU(),
|
316 |
+
linear(time_embed_dim, time_embed_dim),
|
317 |
+
)
|
318 |
+
)
|
319 |
+
else:
|
320 |
+
raise ValueError()
|
321 |
+
|
322 |
+
self.input_blocks = nn.ModuleList(
|
323 |
+
[
|
324 |
+
TimestepEmbedSequential(
|
325 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
326 |
+
)
|
327 |
+
]
|
328 |
+
)
|
329 |
+
self._feature_size = model_channels
|
330 |
+
input_block_chans = [model_channels]
|
331 |
+
ch = model_channels
|
332 |
+
ds = 1
|
333 |
+
for level, mult in enumerate(channel_mult):
|
334 |
+
for nr in range(self.num_res_blocks[level]):
|
335 |
+
layers = [
|
336 |
+
checkpoint_wrapper_fn(
|
337 |
+
ResBlock(
|
338 |
+
ch,
|
339 |
+
time_embed_dim,
|
340 |
+
dropout,
|
341 |
+
out_channels=mult * model_channels,
|
342 |
+
dims=dims,
|
343 |
+
use_checkpoint=use_checkpoint,
|
344 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
345 |
+
)
|
346 |
+
)
|
347 |
+
]
|
348 |
+
ch = mult * model_channels
|
349 |
+
if ds in attention_resolutions:
|
350 |
+
if num_head_channels == -1:
|
351 |
+
dim_head = ch // num_heads
|
352 |
+
else:
|
353 |
+
num_heads = ch // num_head_channels
|
354 |
+
dim_head = num_head_channels
|
355 |
+
if legacy:
|
356 |
+
# num_heads = 1
|
357 |
+
dim_head = (
|
358 |
+
ch // num_heads
|
359 |
+
if use_spatial_transformer
|
360 |
+
else num_head_channels
|
361 |
+
)
|
362 |
+
if exists(disable_self_attentions):
|
363 |
+
disabled_sa = disable_self_attentions[level]
|
364 |
+
else:
|
365 |
+
disabled_sa = False
|
366 |
+
|
367 |
+
if (
|
368 |
+
not exists(num_attention_blocks)
|
369 |
+
or nr < num_attention_blocks[level]
|
370 |
+
):
|
371 |
+
layers.append(
|
372 |
+
checkpoint_wrapper_fn(
|
373 |
+
AttentionBlock(
|
374 |
+
ch,
|
375 |
+
use_checkpoint=use_checkpoint,
|
376 |
+
num_heads=num_heads,
|
377 |
+
num_head_channels=dim_head,
|
378 |
+
use_new_attention_order=use_new_attention_order,
|
379 |
+
)
|
380 |
+
)
|
381 |
+
if not use_spatial_transformer
|
382 |
+
else checkpoint_wrapper_fn(
|
383 |
+
SpatialTransformer(
|
384 |
+
ch,
|
385 |
+
num_heads,
|
386 |
+
dim_head,
|
387 |
+
depth=transformer_depth[level],
|
388 |
+
context_dim=context_dim,
|
389 |
+
disable_self_attn=disabled_sa,
|
390 |
+
use_linear=use_linear_in_transformer,
|
391 |
+
attn_type=spatial_transformer_attn_type,
|
392 |
+
use_checkpoint=use_checkpoint,
|
393 |
+
)
|
394 |
+
)
|
395 |
+
)
|
396 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
397 |
+
self._feature_size += ch
|
398 |
+
input_block_chans.append(ch)
|
399 |
+
if level != len(channel_mult) - 1:
|
400 |
+
out_ch = ch
|
401 |
+
self.input_blocks.append(
|
402 |
+
TimestepEmbedSequential(
|
403 |
+
checkpoint_wrapper_fn(
|
404 |
+
ResBlock(
|
405 |
+
ch,
|
406 |
+
time_embed_dim,
|
407 |
+
dropout,
|
408 |
+
out_channels=out_ch,
|
409 |
+
dims=dims,
|
410 |
+
use_checkpoint=use_checkpoint,
|
411 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
412 |
+
down=True,
|
413 |
+
)
|
414 |
+
)
|
415 |
+
if resblock_updown
|
416 |
+
else Downsample(
|
417 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
418 |
+
)
|
419 |
+
)
|
420 |
+
)
|
421 |
+
ch = out_ch
|
422 |
+
input_block_chans.append(ch)
|
423 |
+
ds *= 2
|
424 |
+
self._feature_size += ch
|
425 |
+
|
426 |
+
if num_head_channels == -1:
|
427 |
+
dim_head = ch // num_heads
|
428 |
+
else:
|
429 |
+
num_heads = ch // num_head_channels
|
430 |
+
dim_head = num_head_channels
|
431 |
+
if legacy:
|
432 |
+
# num_heads = 1
|
433 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
434 |
+
self.middle_block = TimestepEmbedSequential(
|
435 |
+
checkpoint_wrapper_fn(
|
436 |
+
ResBlock(
|
437 |
+
ch,
|
438 |
+
time_embed_dim,
|
439 |
+
dropout,
|
440 |
+
dims=dims,
|
441 |
+
use_checkpoint=use_checkpoint,
|
442 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
443 |
+
)
|
444 |
+
),
|
445 |
+
checkpoint_wrapper_fn(
|
446 |
+
AttentionBlock(
|
447 |
+
ch,
|
448 |
+
use_checkpoint=use_checkpoint,
|
449 |
+
num_heads=num_heads,
|
450 |
+
num_head_channels=dim_head,
|
451 |
+
use_new_attention_order=use_new_attention_order,
|
452 |
+
)
|
453 |
+
)
|
454 |
+
if not use_spatial_transformer
|
455 |
+
else checkpoint_wrapper_fn(
|
456 |
+
SpatialTransformer( # always uses a self-attn
|
457 |
+
ch,
|
458 |
+
num_heads,
|
459 |
+
dim_head,
|
460 |
+
depth=transformer_depth_middle,
|
461 |
+
context_dim=context_dim,
|
462 |
+
disable_self_attn=disable_middle_self_attn,
|
463 |
+
use_linear=use_linear_in_transformer,
|
464 |
+
attn_type=spatial_transformer_attn_type,
|
465 |
+
use_checkpoint=use_checkpoint,
|
466 |
+
)
|
467 |
+
),
|
468 |
+
checkpoint_wrapper_fn(
|
469 |
+
ResBlock(
|
470 |
+
ch,
|
471 |
+
time_embed_dim,
|
472 |
+
dropout,
|
473 |
+
dims=dims,
|
474 |
+
use_checkpoint=use_checkpoint,
|
475 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
476 |
+
)
|
477 |
+
),
|
478 |
+
)
|
479 |
+
|
480 |
+
self.input_upscale = input_upscale
|
481 |
+
self.input_hint_block = TimestepEmbedSequential(
|
482 |
+
zero_module(conv_nd(dims, in_channels, model_channels, 3, padding=1))
|
483 |
+
)
|
484 |
+
|
485 |
+
def convert_to_fp16(self):
|
486 |
+
"""
|
487 |
+
Convert the torso of the model to float16.
|
488 |
+
"""
|
489 |
+
self.input_blocks.apply(convert_module_to_f16)
|
490 |
+
self.middle_block.apply(convert_module_to_f16)
|
491 |
+
|
492 |
+
def convert_to_fp32(self):
|
493 |
+
"""
|
494 |
+
Convert the torso of the model to float32.
|
495 |
+
"""
|
496 |
+
self.input_blocks.apply(convert_module_to_f32)
|
497 |
+
self.middle_block.apply(convert_module_to_f32)
|
498 |
+
|
499 |
+
def forward(self, x, timesteps, xt, context=None, y=None, **kwargs):
|
500 |
+
# with torch.cuda.amp.autocast(enabled=False, dtype=torch.float32):
|
501 |
+
# x = x.to(torch.float32)
|
502 |
+
# timesteps = timesteps.to(torch.float32)
|
503 |
+
# xt = xt.to(torch.float32)
|
504 |
+
# context = context.to(torch.float32)
|
505 |
+
# y = y.to(torch.float32)
|
506 |
+
# print(x.dtype)
|
507 |
+
xt, context, y = xt.to(x.dtype), context.to(x.dtype), y.to(x.dtype)
|
508 |
+
|
509 |
+
if self.input_upscale != 1:
|
510 |
+
x = nn.functional.interpolate(x, scale_factor=self.input_upscale, mode='bilinear', antialias=True)
|
511 |
+
assert (y is not None) == (
|
512 |
+
self.num_classes is not None
|
513 |
+
), "must specify y if and only if the model is class-conditional"
|
514 |
+
hs = []
|
515 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
516 |
+
# import pdb
|
517 |
+
# pdb.set_trace()
|
518 |
+
emb = self.time_embed(t_emb)
|
519 |
+
|
520 |
+
if self.num_classes is not None:
|
521 |
+
assert y.shape[0] == xt.shape[0]
|
522 |
+
emb = emb + self.label_emb(y)
|
523 |
+
|
524 |
+
guided_hint = self.input_hint_block(x, emb, context)
|
525 |
+
|
526 |
+
# h = x.type(self.dtype)
|
527 |
+
h = xt
|
528 |
+
for module in self.input_blocks:
|
529 |
+
if guided_hint is not None:
|
530 |
+
h = module(h, emb, context)
|
531 |
+
h += guided_hint
|
532 |
+
guided_hint = None
|
533 |
+
else:
|
534 |
+
h = module(h, emb, context)
|
535 |
+
hs.append(h)
|
536 |
+
# print(module)
|
537 |
+
# print(h.shape)
|
538 |
+
h = self.middle_block(h, emb, context)
|
539 |
+
hs.append(h)
|
540 |
+
return hs
|
541 |
+
|
542 |
+
|
543 |
+
class LightGLVUNet(UNetModel):
|
544 |
+
def __init__(self, mode='', project_type='ZeroSFT', project_channel_scale=1,
|
545 |
+
*args, **kwargs):
|
546 |
+
super().__init__(*args, **kwargs)
|
547 |
+
if mode == 'XL-base':
|
548 |
+
cond_output_channels = [320] * 4 + [640] * 3 + [1280] * 3
|
549 |
+
project_channels = [160] * 4 + [320] * 3 + [640] * 3
|
550 |
+
concat_channels = [320] * 2 + [640] * 3 + [1280] * 4 + [0]
|
551 |
+
cross_attn_insert_idx = [6, 3]
|
552 |
+
self.progressive_mask_nums = [0, 3, 7, 11]
|
553 |
+
elif mode == 'XL-refine':
|
554 |
+
cond_output_channels = [384] * 4 + [768] * 3 + [1536] * 6
|
555 |
+
project_channels = [192] * 4 + [384] * 3 + [768] * 6
|
556 |
+
concat_channels = [384] * 2 + [768] * 3 + [1536] * 7 + [0]
|
557 |
+
cross_attn_insert_idx = [9, 6, 3]
|
558 |
+
self.progressive_mask_nums = [0, 3, 6, 10, 14]
|
559 |
+
else:
|
560 |
+
raise NotImplementedError
|
561 |
+
|
562 |
+
project_channels = [int(c * project_channel_scale) for c in project_channels]
|
563 |
+
|
564 |
+
self.project_modules = nn.ModuleList()
|
565 |
+
for i in range(len(cond_output_channels)):
|
566 |
+
# if i == len(cond_output_channels) - 1:
|
567 |
+
# _project_type = 'ZeroCrossAttn'
|
568 |
+
# else:
|
569 |
+
# _project_type = project_type
|
570 |
+
_project_type = project_type
|
571 |
+
if _project_type == 'ZeroSFT':
|
572 |
+
self.project_modules.append(ZeroSFT(project_channels[i], cond_output_channels[i],
|
573 |
+
concat_channels=concat_channels[i]))
|
574 |
+
elif _project_type == 'ZeroCrossAttn':
|
575 |
+
self.project_modules.append(ZeroCrossAttn(cond_output_channels[i], project_channels[i]))
|
576 |
+
else:
|
577 |
+
raise NotImplementedError
|
578 |
+
|
579 |
+
for i in cross_attn_insert_idx:
|
580 |
+
self.project_modules.insert(i, ZeroCrossAttn(cond_output_channels[i], concat_channels[i]))
|
581 |
+
# print(self.project_modules[i])
|
582 |
+
|
583 |
+
def step_progressive_mask(self):
|
584 |
+
if len(self.progressive_mask_nums) > 0:
|
585 |
+
mask_num = self.progressive_mask_nums.pop()
|
586 |
+
for i in range(len(self.project_modules)):
|
587 |
+
if i < mask_num:
|
588 |
+
self.project_modules[i].mask = True
|
589 |
+
else:
|
590 |
+
self.project_modules[i].mask = False
|
591 |
+
return
|
592 |
+
# print(f'step_progressive_mask, current masked layers: {mask_num}')
|
593 |
+
else:
|
594 |
+
return
|
595 |
+
# print('step_progressive_mask, no more masked layers')
|
596 |
+
# for i in range(len(self.project_modules)):
|
597 |
+
# print(self.project_modules[i].mask)
|
598 |
+
|
599 |
+
|
600 |
+
def forward(self, x, timesteps=None, context=None, y=None, control=None, control_scale=1, **kwargs):
|
601 |
+
"""
|
602 |
+
Apply the model to an input batch.
|
603 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
604 |
+
:param timesteps: a 1-D batch of timesteps.
|
605 |
+
:param context: conditioning plugged in via crossattn
|
606 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
607 |
+
:return: an [N x C x ...] Tensor of outputs.
|
608 |
+
"""
|
609 |
+
assert (y is not None) == (
|
610 |
+
self.num_classes is not None
|
611 |
+
), "must specify y if and only if the model is class-conditional"
|
612 |
+
hs = []
|
613 |
+
|
614 |
+
_dtype = control[0].dtype
|
615 |
+
x, context, y = x.to(_dtype), context.to(_dtype), y.to(_dtype)
|
616 |
+
|
617 |
+
with torch.no_grad():
|
618 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
619 |
+
emb = self.time_embed(t_emb)
|
620 |
+
|
621 |
+
if self.num_classes is not None:
|
622 |
+
assert y.shape[0] == x.shape[0]
|
623 |
+
emb = emb + self.label_emb(y)
|
624 |
+
|
625 |
+
# h = x.type(self.dtype)
|
626 |
+
h = x
|
627 |
+
for module in self.input_blocks:
|
628 |
+
h = module(h, emb, context)
|
629 |
+
hs.append(h)
|
630 |
+
|
631 |
+
adapter_idx = len(self.project_modules) - 1
|
632 |
+
control_idx = len(control) - 1
|
633 |
+
h = self.middle_block(h, emb, context)
|
634 |
+
h = self.project_modules[adapter_idx](control[control_idx], h, control_scale=control_scale)
|
635 |
+
adapter_idx -= 1
|
636 |
+
control_idx -= 1
|
637 |
+
|
638 |
+
for i, module in enumerate(self.output_blocks):
|
639 |
+
_h = hs.pop()
|
640 |
+
h = self.project_modules[adapter_idx](control[control_idx], _h, h, control_scale=control_scale)
|
641 |
+
adapter_idx -= 1
|
642 |
+
# h = th.cat([h, _h], dim=1)
|
643 |
+
if len(module) == 3:
|
644 |
+
assert isinstance(module[2], Upsample)
|
645 |
+
for layer in module[:2]:
|
646 |
+
if isinstance(layer, TimestepBlock):
|
647 |
+
h = layer(h, emb)
|
648 |
+
elif isinstance(layer, SpatialTransformer):
|
649 |
+
h = layer(h, context)
|
650 |
+
else:
|
651 |
+
h = layer(h)
|
652 |
+
# print('cross_attn_here')
|
653 |
+
h = self.project_modules[adapter_idx](control[control_idx], h, control_scale=control_scale)
|
654 |
+
adapter_idx -= 1
|
655 |
+
h = module[2](h)
|
656 |
+
else:
|
657 |
+
h = module(h, emb, context)
|
658 |
+
control_idx -= 1
|
659 |
+
# print(module)
|
660 |
+
# print(h.shape)
|
661 |
+
|
662 |
+
h = h.type(x.dtype)
|
663 |
+
if self.predict_codebook_ids:
|
664 |
+
assert False, "not supported anymore. what the f*** are you doing?"
|
665 |
+
else:
|
666 |
+
return self.out(h)
|
667 |
+
|
668 |
+
if __name__ == '__main__':
|
669 |
+
from omegaconf import OmegaConf
|
670 |
+
|
671 |
+
# refiner
|
672 |
+
# opt = OmegaConf.load('../../options/train/debug_p2_xl.yaml')
|
673 |
+
#
|
674 |
+
# model = instantiate_from_config(opt.model.params.control_stage_config)
|
675 |
+
# hint = model(torch.randn([1, 4, 64, 64]), torch.randn([1]), torch.randn([1, 4, 64, 64]))
|
676 |
+
# hint = [h.cuda() for h in hint]
|
677 |
+
# print(sum(map(lambda hint: hint.numel(), model.parameters())))
|
678 |
+
#
|
679 |
+
# unet = instantiate_from_config(opt.model.params.network_config)
|
680 |
+
# unet = unet.cuda()
|
681 |
+
#
|
682 |
+
# _output = unet(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 77, 1280]).cuda(),
|
683 |
+
# torch.randn([1, 2560]).cuda(), hint)
|
684 |
+
# print(sum(map(lambda _output: _output.numel(), unet.parameters())))
|
685 |
+
|
686 |
+
# base
|
687 |
+
with torch.no_grad():
|
688 |
+
opt = OmegaConf.load('../../options/dev/SUPIR_tmp.yaml')
|
689 |
+
|
690 |
+
model = instantiate_from_config(opt.model.params.control_stage_config)
|
691 |
+
model = model.cuda()
|
692 |
+
|
693 |
+
hint = model(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1, 77, 2048]).cuda(),
|
694 |
+
torch.randn([1, 2816]).cuda())
|
695 |
+
|
696 |
+
for h in hint:
|
697 |
+
print(h.shape)
|
698 |
+
#
|
699 |
+
unet = instantiate_from_config(opt.model.params.network_config)
|
700 |
+
unet = unet.cuda()
|
701 |
+
_output = unet(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 77, 2048]).cuda(),
|
702 |
+
torch.randn([1, 2816]).cuda(), hint)
|
703 |
+
|
704 |
+
|
705 |
+
# model = instantiate_from_config(opt.model.params.control_stage_config)
|
706 |
+
# model = model.cuda()
|
707 |
+
# # hint = model(torch.randn([1, 4, 64, 64]), torch.randn([1]), torch.randn([1, 4, 64, 64]))
|
708 |
+
# hint = model(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1, 77, 1280]).cuda(),
|
709 |
+
# torch.randn([1, 2560]).cuda())
|
710 |
+
# # hint = [h.cuda() for h in hint]
|
711 |
+
#
|
712 |
+
# for h in hint:
|
713 |
+
# print(h.shape)
|
714 |
+
#
|
715 |
+
# unet = instantiate_from_config(opt.model.params.network_config)
|
716 |
+
# unet = unet.cuda()
|
717 |
+
# _output = unet(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 77, 1280]).cuda(),
|
718 |
+
# torch.randn([1, 2560]).cuda(), hint)
|