Fabrice-TIERCELIN commited on
Commit
ea2ddb8
·
verified ·
1 Parent(s): 22d45a3

min_size=32

Browse files
Files changed (1) hide show
  1. gradio_demo.py +2 -2
gradio_demo.py CHANGED
@@ -175,7 +175,7 @@ def stage2_process(
175
  model.current_model = model_select
176
  input_image = HWC3(input_image)
177
  input_image = upscale_image(input_image, upscale, unit_resolution=32,
178
- min_size=1024)
179
 
180
  LQ = np.array(input_image) / 255.0
181
  LQ = np.power(LQ, gamma_correction)
@@ -338,7 +338,7 @@ with gr.Blocks(title="SUPIR") as interface:
338
  output_format = gr.Radio(["png", "webp", "jpeg", "gif", "bmp"], label="Image format for result", info="File extention", value="png", interactive=True)
339
 
340
  with gr.Accordion("Pre-denoising (optional)", open=False):
341
- gamma_correction = gr.Slider(label="Gamma Correction", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
342
  denoise_button = gr.Button(value="Pre-denoise")
343
  denoise_image = gr.Image(label="Denoised image", show_label=True, type="numpy", height=600, elem_id="image-s1")
344
  denoise_information = gr.HTML(value="If present, the denoised image will be used for the restoration instead of the input image.", visible=False)
 
175
  model.current_model = model_select
176
  input_image = HWC3(input_image)
177
  input_image = upscale_image(input_image, upscale, unit_resolution=32,
178
+ min_size=32)
179
 
180
  LQ = np.array(input_image) / 255.0
181
  LQ = np.power(LQ, gamma_correction)
 
338
  output_format = gr.Radio(["png", "webp", "jpeg", "gif", "bmp"], label="Image format for result", info="File extention", value="png", interactive=True)
339
 
340
  with gr.Accordion("Pre-denoising (optional)", open=False):
341
+ gamma_correction = gr.Slider(label="Gamma Correction", info = "lower=lighter, higher=darker", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
342
  denoise_button = gr.Button(value="Pre-denoise")
343
  denoise_image = gr.Image(label="Denoised image", show_label=True, type="numpy", height=600, elem_id="image-s1")
344
  denoise_information = gr.HTML(value="If present, the denoised image will be used for the restoration instead of the input image.", visible=False)