Fabrice-TIERCELIN
commited on
min_size=32
Browse files- gradio_demo.py +2 -2
gradio_demo.py
CHANGED
@@ -175,7 +175,7 @@ def stage2_process(
|
|
175 |
model.current_model = model_select
|
176 |
input_image = HWC3(input_image)
|
177 |
input_image = upscale_image(input_image, upscale, unit_resolution=32,
|
178 |
-
min_size=
|
179 |
|
180 |
LQ = np.array(input_image) / 255.0
|
181 |
LQ = np.power(LQ, gamma_correction)
|
@@ -338,7 +338,7 @@ with gr.Blocks(title="SUPIR") as interface:
|
|
338 |
output_format = gr.Radio(["png", "webp", "jpeg", "gif", "bmp"], label="Image format for result", info="File extention", value="png", interactive=True)
|
339 |
|
340 |
with gr.Accordion("Pre-denoising (optional)", open=False):
|
341 |
-
gamma_correction = gr.Slider(label="Gamma Correction", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
|
342 |
denoise_button = gr.Button(value="Pre-denoise")
|
343 |
denoise_image = gr.Image(label="Denoised image", show_label=True, type="numpy", height=600, elem_id="image-s1")
|
344 |
denoise_information = gr.HTML(value="If present, the denoised image will be used for the restoration instead of the input image.", visible=False)
|
|
|
175 |
model.current_model = model_select
|
176 |
input_image = HWC3(input_image)
|
177 |
input_image = upscale_image(input_image, upscale, unit_resolution=32,
|
178 |
+
min_size=32)
|
179 |
|
180 |
LQ = np.array(input_image) / 255.0
|
181 |
LQ = np.power(LQ, gamma_correction)
|
|
|
338 |
output_format = gr.Radio(["png", "webp", "jpeg", "gif", "bmp"], label="Image format for result", info="File extention", value="png", interactive=True)
|
339 |
|
340 |
with gr.Accordion("Pre-denoising (optional)", open=False):
|
341 |
+
gamma_correction = gr.Slider(label="Gamma Correction", info = "lower=lighter, higher=darker", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
|
342 |
denoise_button = gr.Button(value="Pre-denoise")
|
343 |
denoise_image = gr.Image(label="Denoised image", show_label=True, type="numpy", height=600, elem_id="image-s1")
|
344 |
denoise_information = gr.HTML(value="If present, the denoised image will be used for the restoration instead of the input image.", visible=False)
|