File size: 2,006 Bytes
7acdb5c
 
5bb7259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7acdb5c
 
 
 
 
 
 
 
 
 
 
 
5bb7259
7acdb5c
 
5bb7259
7acdb5c
 
 
5bb7259
 
 
7acdb5c
 
5bb7259
 
7acdb5c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import streamlit as st

import os

import google.generativeai as genai

genai.configure(api_key=os.environ["GEMINI_API_KEY"])


# Create the model
# See https://ai.google.dev/api/python/google/generativeai/GenerativeModel
generation_config = {
  "temperature": 1,
  "top_p": 0.95,
  "top_k": 64,
  "max_output_tokens": 8192,
  "response_mime_type": "text/plain",
}

safety_settings = [
  {
    "category": "HARM_CATEGORY_HARASSMENT",
    "threshold": "BLOCK_MEDIUM_AND_ABOVE",
  },
  {
    "category": "HARM_CATEGORY_HATE_SPEECH",
    "threshold": "BLOCK_MEDIUM_AND_ABOVE",
  },
  {
    "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
    "threshold": "BLOCK_MEDIUM_AND_ABOVE",
  },
  {
    "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
    "threshold": "BLOCK_MEDIUM_AND_ABOVE",
  },
]

model = genai.GenerativeModel(
  model_name="gemini-1.5-flash-latest",
  safety_settings=safety_settings,
  generation_config=generation_config,
)

chat_session = model.start_chat(
  history=[]
)

# response = chat_session.send_message("INSERT_INPUT_HERE")

# print(response.text)
# print(chat_session.history)



st.title("Gemini 1.5")

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# React to user input
if prompt := st.chat_input("What is up?"):

    # Display user message in chat message container
    st.chat_message("user").markdown(prompt)

    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})

    # Response
    response = chat_session.send_message(prompt)

    # Display assistant response in chat message container
    with st.chat_message("assistant"):
        st.markdown(response.text)

    # Add assistant response to chat history
    st.session_state.messages.append({"role": "assistant", "content": response})