Spaces:
Runtime error
Runtime error
File size: 17,466 Bytes
4b8437d 23c0e05 4b8437d d2e04e2 4b8437d d2e04e2 4b8437d 4dfe276 4b8437d 23c0e05 5b34d4f 4b8437d bd0e99e 49ab968 4b8437d 23c0e05 4b8437d 23c0e05 c537c3e 4b8437d 23c0e05 4b8437d d271579 c537c3e 4aecca8 23c0e05 9a9cf52 bb9cfb4 23c0e05 3603dbb 23c0e05 1b706f6 e5e905d 4b8437d 23c0e05 bd0e99e 23c0e05 bd0e99e 23c0e05 4aecca8 bd0e99e 4aecca8 c624994 bd0e99e 4aecca8 bd0e99e 3603dbb bd0e99e 1b706f6 c537c3e 4b8437d 23c0e05 1b706f6 23c0e05 4b8437d c537c3e 23c0e05 4b8437d c537c3e 4b8437d bd0e99e 4b8437d 23c0e05 4b8437d 23c0e05 4b8437d c624994 ab9ff74 4b8437d c537c3e 4b8437d 23c0e05 4b8437d 23c0e05 4b8437d 9a9cf52 4b8437d bd0e99e 4b8437d c537c3e 4b8437d 27a6b11 9d163ab d8dbbac 4948e56 23c0e05 e8d856b 46e0332 23c0e05 c537c3e 1b706f6 23c0e05 f232d9c 23c0e05 ca9e81a bd0e99e d8dbbac f232d9c 23c0e05 4aecca8 bd0e99e c537c3e 4aecca8 1b706f6 c537c3e 23c0e05 4aecca8 1b706f6 23c0e05 1b706f6 23c0e05 bd0e99e 23c0e05 bd0e99e 23c0e05 4aecca8 1b706f6 23c0e05 1b706f6 23c0e05 bd0e99e 23c0e05 1b706f6 7aa699b 4b8437d 23c0e05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import gradio as gr
import torch
import numpy as np
import requests
import random
from io import BytesIO
# from utils import *
# from constants import *
from pipeline_semantic_stable_diffusion_xl_img2img_ddpm import *
from torch import inference_mode
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, AutoencoderKL
from diffusers import DDIMScheduler
# from share_btn import community_icon_html, loading_icon_html, share_js
import torch
from huggingface_hub import hf_hub_download
from diffusers import DiffusionPipeline
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler
import json
from safetensors.torch import load_file
# import lora
import copy
import json
import gc
import random
from time import sleep
from pathlib import Path
from uuid import uuid4
IMAGE_DATASET_DIR = Path("image_dataset") / f"train-{uuid4()}"
IMAGE_DATASET_DIR.mkdir(parents=True, exist_ok=True)
IMAGE_JSONL_PATH = IMAGE_DATASET_DIR / "metadata.jsonl"
with open("sdxl_loras.json", "r") as file:
data = json.load(file)
sdxl_loras_raw = [
{
"image": item["image"],
"title": item["title"],
"repo": item["repo"],
"trigger_word": item["trigger_word"],
"weights": item["weights"],
"is_compatible": item["is_compatible"],
"is_pivotal": item.get("is_pivotal", False),
"text_embedding_weights": item.get("text_embedding_weights", None),
# "likes": item.get("likes", 0),
# "downloads": item.get("downloads", 0),
"is_nc": item.get("is_nc", False),
"edit_guidance_scale": item["edit_guidance_scale"],
"threshold": item["threshold"]
}
for item in data
]
state_dicts = {}
for item in sdxl_loras_raw:
saved_name = hf_hub_download(item["repo"], item["weights"])
if not saved_name.endswith('.safetensors'):
state_dict = torch.load(saved_name)
else:
state_dict = load_file(saved_name)
state_dicts[item["repo"]] = {
"saved_name": saved_name,
"state_dict": state_dict
} | item
sd_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
sd_pipe = SemanticStableDiffusionXLImg2ImgPipeline_DDPMInversion.from_pretrained(sd_model_id,
torch_dtype=torch.float16, variant="fp16", use_safetensors=True,vae=vae,
)
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")
original_pipe = copy.deepcopy(sd_pipe)
sd_pipe.to(device)
last_lora = ""
last_merged = False
last_fused = False
def load_lora(sdxl_loras, random_lora_index, lora_scale = 1.0, progress=gr.Progress(track_tqdm=True)):
global last_lora, last_merged, last_fused, sd_pipe
#random_lora_index = random.randrange(0, len(sdxl_loras), 1)
print(random_lora_index)
#print(sdxl_loras)
repo_name = sdxl_loras[random_lora_index]["repo"]
weight_name = sdxl_loras[random_lora_index]["weights"]
full_path_lora = state_dicts[repo_name]["saved_name"]
loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
cross_attention_kwargs = None
print(repo_name)
if last_lora != repo_name:
if last_merged:
del sd_pipe
gc.collect()
sd_pipe = copy.deepcopy(original_pipe)
sd_pipe.to(device)
elif(last_fused):
sd_pipe.unfuse_lora()
sd_pipe.unload_lora_weights()
is_compatible = sdxl_loras[random_lora_index]["is_compatible"]
if is_compatible:
sd_pipe.load_lora_weights(loaded_state_dict)
sd_pipe.fuse_lora(lora_scale)
last_fused = True
else:
is_pivotal = sdxl_loras[random_lora_index]["is_pivotal"]
if(is_pivotal):
sd_pipe.load_lora_weights(loaded_state_dict)
sd_pipe.fuse_lora(lora_scale)
last_fused = True
#Add the textual inversion embeddings from pivotal tuning models
text_embedding_name = sdxl_loras[random_lora_index]["text_embedding_weights"]
text_encoders = [sd_pipe.text_encoder, sd_pipe.text_encoder_2]
tokenizers = [sd_pipe.tokenizer, sd_pipe.tokenizer_2]
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
embhandler = TokenEmbeddingsHandler(text_encoders, tokenizers)
embhandler.load_embeddings(embedding_path)
else:
merge_incompatible_lora(full_path_lora, lora_scale)
last_fused = False
last_merged = True
print("DONE MERGING")
#return random_lora_index
## SEGA ##
def shuffle_lora(sdxl_loras, selected_lora=None, chosen_prompt=""):
print("selected_lora in shuffle_lora", selected_lora)
if(selected_lora is not None):
random_lora_index = selected_lora
else:
random_lora_index = random.randrange(0, len(sdxl_loras), 1)
print("random_lora_index in shuffle_lora: ", random_lora_index)
if(chosen_prompt):
spooky_concept = chosen_prompt
else:
spooky_concept = random.choice([' spooky witch', ' spooky vampire', ' spooky werewolf', ' spooky ghost', ' spooky wizard', ' spooky pumpkin', ' spooky wizard', 'spooky skeleton'])
lora_repo = sdxl_loras[random_lora_index]["repo"]
lora_title = sdxl_loras[random_lora_index]["title"]
lora_desc = f"""#### LoRA used:
### {lora_title}
by `{lora_repo.split('/')[0]}`
###### prompt: {spooky_concept}
"""
lora_image = sdxl_loras[random_lora_index]["image"]
return gr.update(), random_lora_index, lora_image, lora_desc, gr.update(visible=True), gr.update(height=260), spooky_concept
def check_if_removed(input_image):
if(input_image is None):
return gr.Row(visible=False), gr.Column(elem_classes="output_column"), gr.Image(value=None), gr.State(value=None), gr.Column(visible=False)
else:
return gr.Row(), gr.Column(), gr.Image(), None, gr.Column()
def block_if_removed(input_image):
if(input_image is None):
raise gr.Warning("Photo removed. Upload a new one!")
def select_lora(selected_state: gr.SelectData, sdxl_loras, chosen_prompt):
random_lora_index = selected_state.index
if(chosen_prompt):
spooky_concept = chosen_prompt
else:
spooky_concept = random.choice([' spooky witch', ' spooky vampire', ' spooky werewolf', ' spooky ghost', ' spooky wizard', ' spooky pumpkin', ' spooky wizard', ' spooky skeleton', ' spooky zombie'])
lora_repo = sdxl_loras[random_lora_index]["repo"]
lora_title = sdxl_loras[random_lora_index]["title"]
lora_desc = f"""#### LoRA used to edit this image:
### {lora_title}
by `{lora_repo.split('/')[0]}`
###### prompt: {spooky_concept}
"""
lora_image = sdxl_loras[random_lora_index]["image"]
return random_lora_index, lora_image, lora_desc, spooky_concept
def edit(sdxl_loras,
input_image,
wts, zs,
do_inversion,
random_lora_index,
spooky_concept,
progress=gr.Progress(track_tqdm=True)
):
show_share_button = gr.update(visible=True)
print("random_lora_index in edit: ", random_lora_index)
load_lora(sdxl_loras, random_lora_index)
src_prompt = ""
skip = 18
steps = 50
tar_cfg_scale = 15
src_cfg_scale = 3.5
tar_prompt = ""
print("Is do_inversion?", do_inversion)
if do_inversion:
image = load_image(input_image, device=device).to(torch.float16)
with inference_mode():
x0 = sd_pipe.vae.encode(image).latent_dist.sample() * sd_pipe.vae.config.scaling_factor
# invert and retrieve noise maps and latent
zs_tensor, wts_tensor = sd_pipe.invert(x0,
source_prompt= src_prompt,
# source_prompt_2 = None,
source_guidance_scale = src_cfg_scale,
negative_prompt = "blurry, bad quality",
# negative_prompt_2 = None,
num_inversion_steps = steps,
skip_steps = skip,
# eta = 1.0,
)
wts = wts_tensor
zs = zs_tensor
do_inversion = False
latnets = wts[skip].expand(1, -1, -1, -1)
# spooky_concept = random.choice([' spooky witch', ' spooky vampire', ' spooky werewolf', ' spooky ghost', ' spooky wizard', ' spooky pumpkin', ' spooky skeleton', ' spooky zombie'])
print("spooky concept is: ", spooky_concept)
editing_prompt = [sdxl_loras[random_lora_index]["trigger_word"]+ spooky_concept]
reverse_editing_direction = [False]
edit_warmup_steps = [2]
edit_guidance_scale = [sdxl_loras[random_lora_index]["edit_guidance_scale"]]
edit_threshold = [sdxl_loras[random_lora_index]["threshold"]]
editing_args = dict(
editing_prompt = editing_prompt,
reverse_editing_direction = reverse_editing_direction,
edit_warmup_steps=edit_warmup_steps,
edit_guidance_scale=edit_guidance_scale,
edit_threshold=edit_threshold,
edit_momentum_scale=0.3,
edit_mom_beta=0.6,
eta=1,)
torch.manual_seed(torch.seed())
sega_out = sd_pipe(prompt=tar_prompt, latents=latnets, guidance_scale = tar_cfg_scale,
# num_images_per_prompt=1,
# num_inference_steps=steps,
wts=wts, zs=zs[skip:], **editing_args)
#lora_repo = sdxl_loras[random_lora_index]["repo"]
#lora_desc = f"### LoRA Used To Edit this Image: {lora_repo}' }"
#lora_image = sdxl_loras[random_lora_index]["image"]
return sega_out.images[0], wts, zs, do_inversion, gr.update(height=405), gr.Column(elem_classes="output_column_reverse"), gr.Row(visible=True)
def randomize_seed_fn(seed, randomize_seed):
if randomize_seed:
seed = random.randint(0, np.iinfo(np.int32).max)
torch.manual_seed(seed)
return seed
def randomize():
seed = random.randint(0, np.iinfo(np.int32).max)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
def crop_image(image):
h, w, c = image.shape
if h < w:
offset = (w - h) // 2
image = image[:, offset:offset + h]
elif w < h:
offset = (h - w) // 2
image = image[offset:offset + w]
image = np.array(Image.fromarray(image).resize((1024, 1024)))
return image
def save_preferences(sdxl_loras, selected_lora, input_image, result_image):
lora_id = sdxl_loras[selected_lora]["repo"]
uuid = uuid4()
input_image_path = IMAGE_DATASET_DIR / f"{uuid}-input.png"
output_image_path = IMAGE_DATASET_DIR / f"{uuid}-output.png"
Image.fromarray(input_image).save(input_image_path)
Image.fromarray(result_image).save(output_image_path)
with IMAGE_JSONL_PATH.open("a") as f:
json.dump({"selected_lora": lora_id, "input_image":input_image_path.name, "result_image":output_image_path.name}, f)
f.write("\n")
########r
# demo #
########
with gr.Blocks(css="style.css") as demo:
def reset_do_inversion():
return True
gr.HTML("""<img style="margin: 0 auto; width: 180px;" src="https://i.imgur.com/zDcvSbg.png" alt="LEDITS SDXL LoRA Photobooth">""")
gr.HTML("""<img style="margin: 0 auto; width: 285px;margin-bottom: .5em;margin-top:-50px;padding-left: 10px;" src="https://i.imgur.com/hvZOBzY.png" alt="LEDITS SDXL LoRA Photobooth">""")
#gr.HTML("""<img class="background-printing" style="display: none" src="https://i.imgur.com/gqXjjP0.jpg" /> """, elem_id="background_printing_wrapper")
with gr.Box(elem_id="total_box"):
gr.HTML(
"""
<h3>Smile, take a pic 📷✨ and it'll be inverted and edited using <a href="https://editing-images-project.static.hf.space/" target="_blank">LEDITS</a> and a random SDXL LoRA</h3>
""",
)
wts = gr.State()
zs = gr.State()
reconstruction = gr.State()
do_inversion = gr.State(value=True)
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
gr_lora_index = gr.State()
gr_picked_lora = gr.State()
spooky_concept = gr.State()
with gr.Row():
input_image = gr.Image(label="Input Image", interactive=True, source="webcam", height=405, elem_id="input_image")
with gr.Column(elem_classes="output_column") as output_column:
with gr.Row(visible=False) as loaded_lora:
lora_image = gr.Image(interactive=False, height=128, width=128, elem_id="lora_image", show_label=False, show_download_button=False)
lora_desc = gr.Markdown()
sega_edited_image = gr.Image(label=f"LEDITS Edited Image", interactive=False, elem_id="output_image", height=405)
with gr.Column(visible=False) as buttons_area:
with gr.Row(elem_id="buttons_area"):
#print_button = gr.HTML('<button onclick="window.print()" class="lg secondary svelte-cmf5ev" id="print" style="width: 100%;margin-bottom:0">Save PDF/Print 🖨️</button>')
run_button = gr.Button("Regenerate with the same picture 🖼️ 🎲", elem_id="run_again")
with gr.Accordion("Tired of randomizing? Pick your prompt and LoRA", open=False, elem_id="pick", ):
choose_prompt = gr.Textbox(label="Spooky Prompt", value="")
choose_gallery = gr.Gallery(
value=[(item["image"], item["title"]) for item in sdxl_loras_raw],
allow_preview=False,
columns=6,
elem_id="gallery",
show_share_button=False
)
choose_gallery.select(
fn=select_lora,
inputs=[gr_sdxl_loras, choose_prompt],
outputs=[gr_picked_lora, lora_image, lora_desc, spooky_concept],
queue=False
)
run_button.click(
fn=shuffle_lora,
inputs=[gr_sdxl_loras, gr_picked_lora, choose_prompt],
outputs=[sega_edited_image, gr_lora_index, lora_image, lora_desc, loaded_lora, sega_edited_image, spooky_concept],
queue=False
).then(
fn=edit,
inputs=[gr_sdxl_loras,
input_image,
wts, zs,
do_inversion,
gr_lora_index, spooky_concept
],
outputs=[sega_edited_image, wts, zs, do_inversion, sega_edited_image, output_column, buttons_area]
).then(
fn=save_preferences,
inputs=[gr_sdxl_loras, gr_lora_index, input_image, sega_edited_image],
queue=False
)
input_image.change(
fn = check_if_removed,
inputs = [input_image],
outputs = [loaded_lora, output_column, sega_edited_image, gr_picked_lora, buttons_area],
queue=False,
show_progress=False
).then(
fn = block_if_removed,
inputs = [input_image],
queue=False,
show_progress=False
).success(
fn = reset_do_inversion,
outputs = [do_inversion],
queue = False).then(
fn=shuffle_lora,
inputs=[gr_sdxl_loras, gr_picked_lora, choose_prompt],
outputs=[sega_edited_image, gr_lora_index, lora_image, lora_desc, loaded_lora, sega_edited_image, spooky_concept],
queue=False
).then(
fn=edit,
inputs=[gr_sdxl_loras,
input_image,
wts, zs,
do_inversion,
gr_lora_index,
spooky_concept
],
outputs=[sega_edited_image, wts, zs, do_inversion, sega_edited_image, output_column, buttons_area]
).then(
fn=save_preferences,
inputs=[gr_sdxl_loras, gr_lora_index, input_image, sega_edited_image],
queue=False
)
demo.load(None,
_js="""async () => {
let gradioURL = new URL(window.self.location.href);
let params = new URLSearchParams(gradioURL.search);
if (!params.has('__theme') || params.get('__theme') !== 'dark') {
params.set('__theme', 'dark');
gradioURL.search = params.toString();
window.self.location.replace(gradioURL.toString());
}
}""")
demo.queue()
demo.launch() |