Spaces:
Runtime error
Runtime error
File size: 12,441 Bytes
4b8437d 23c0e05 4b8437d 828fab6 4b8437d 44228f5 4b8437d ec70079 4b8437d 23c0e05 4b8437d b62d550 4b8437d 23c0e05 4b8437d 23c0e05 4b8437d 23c0e05 4b8437d 23c0e05 4b8437d 23c0e05 4b8437d 23c0e05 4b8437d 23c0e05 4b8437d 23c0e05 4b8437d 23c0e05 4b8437d 23c0e05 4b8437d 23c0e05 4b8437d 23c0e05 4b8437d 23c0e05 4b8437d 23c0e05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
import gradio as gr
import torch
import numpy as np
import requests
import random
from io import BytesIO
# from utils import *
# from constants import *
from pipeline_semantic_stable_diffusion_xl_img2img_ddpm import *
from torch import inference_mode
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, AutoencoderKL
from diffusers import DDIMScheduler
# from share_btn import community_icon_html, loading_icon_html, share_js
import torch
from huggingface_hub import hf_hub_download
from diffusers import DiffusionPipeline
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler
import json
from safetensors.torch import load_file
# import lora
import copy
import json
import gc
import random
from time import sleep
with open("sdxl_loras.json", "r") as file:
data = json.load(file)
sdxl_loras_raw = [
{
"image": item["image"],
"title": item["title"],
"repo": item["repo"],
"trigger_word": item["trigger_word"],
"weights": item["weights"],
"is_compatible": item["is_compatible"],
"is_pivotal": item.get("is_pivotal", False),
"text_embedding_weights": item.get("text_embedding_weights", None),
# "likes": item.get("likes", 0),
# "downloads": item.get("downloads", 0),
"is_nc": item.get("is_nc", False),
"edit_guidance_scale": item["edit_guidance_scale"],
"threshold": item["threshold"]
}
for item in data
]
state_dicts = {}
for item in sdxl_loras_raw:
saved_name = hf_hub_download(item["repo"], item["weights"])
if not saved_name.endswith('.safetensors'):
state_dict = torch.load(saved_name)
else:
state_dict = load_file(saved_name)
state_dicts[item["repo"]] = {
"saved_name": saved_name,
"state_dict": state_dict
} | item
sd_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
sd_pipe = SemanticStableDiffusionXLImg2ImgPipeline_DDPMInversion.from_pretrained(sd_model_id,
torch_dtype=torch.float16, variant="fp16", use_safetensors=True,vae=vae,
)
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")
original_pipe = copy.deepcopy(sd_pipe)
sd_pipe.to(device)
last_lora = ""
last_merged = False
last_fused = False
def load_lora(sdxl_loras, random_lora_index, lora_scale = 1.0, progress=gr.Progress(track_tqdm=True)):
global last_lora, last_merged, last_fused, sd_pipe
randomize()
#random_lora_index = random.randrange(0, len(sdxl_loras), 1)
repo_name = sdxl_loras[random_lora_index]["repo"]
weight_name = sdxl_loras[random_lora_index]["weights"]
full_path_lora = state_dicts[repo_name]["saved_name"]
loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
cross_attention_kwargs = None
print(repo_name)
if last_lora != repo_name:
if last_merged:
del sd_pipe
gc.collect()
sd_pipe = copy.deepcopy(original_pipe)
sd_pipe.to(device)
elif(last_fused):
sd_pipe.unfuse_lora()
sd_pipe.unload_lora_weights()
is_compatible = sdxl_loras[random_lora_index]["is_compatible"]
if is_compatible:
sd_pipe.load_lora_weights(loaded_state_dict)
sd_pipe.fuse_lora(lora_scale)
last_fused = True
else:
is_pivotal = sdxl_loras[random_lora_index]["is_pivotal"]
if(is_pivotal):
sd_pipe.load_lora_weights(loaded_state_dict)
sd_pipe.fuse_lora(lora_scale)
last_fused = True
#Add the textual inversion embeddings from pivotal tuning models
text_embedding_name = sdxl_loras[random_lora_index]["text_embedding_weights"]
text_encoders = [sd_pipe.text_encoder, sd_pipe.text_encoder_2]
tokenizers = [sd_pipe.tokenizer, sd_pipe.tokenizer_2]
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
embhandler = TokenEmbeddingsHandler(text_encoders, tokenizers)
embhandler.load_embeddings(embedding_path)
else:
merge_incompatible_lora(full_path_lora, lora_scale)
last_fused = False
last_merged = True
print("DONE MERGING")
#return random_lora_index
## SEGA ##
def shuffle_lora(sdxl_loras):
#random_lora_index = load_lora(sdxl_loras)
random_lora_index = random.randrange(0, len(sdxl_loras), 1)
lora_repo = sdxl_loras[random_lora_index]["repo"]
lora_title = sdxl_loras[random_lora_index]["title"]
lora_desc = f"""#### LoRA used to edit this image:
## {lora_title}
by `{lora_repo.split('/')[0]}`
"""
lora_image = sdxl_loras[random_lora_index]["image"]
return random_lora_index, lora_image, lora_desc, gr.update(visible=True), gr.update(height=369)
def check_if_removed(input_image):
if(input_image is None):
return gr.Row(visible=False), gr.Column(elem_classes="output_column"), gr.Image(value=None)
else:
return gr.Row(), gr.Column(), gr.Image()
def block_if_removed(input_image):
if(input_image is None):
raise gr.Warning("Photo removed. Upload a new one!")
def edit(sdxl_loras,
input_image,
wts, zs,
do_inversion,
random_lora_index,
progress=gr.Progress(track_tqdm=True)
):
show_share_button = gr.update(visible=True)
load_lora(sdxl_loras, random_lora_index)
src_prompt = ""
skip = 18
steps = 50
tar_cfg_scale = 15
src_cfg_scale = 3.5
tar_prompt = ""
if do_inversion:
image = load_image(input_image, device=device).to(torch.float16)
with inference_mode():
x0 = sd_pipe.vae.encode(image).latent_dist.sample() * sd_pipe.vae.config.scaling_factor
# invert and retrieve noise maps and latent
zs_tensor, wts_tensor = sd_pipe.invert(x0,
source_prompt= src_prompt,
# source_prompt_2 = None,
source_guidance_scale = src_cfg_scale,
negative_prompt = "blurry, ugly, bad quality",
# negative_prompt_2 = None,
num_inversion_steps = steps,
skip_steps = skip,
# eta = 1.0,
)
wts = wts_tensor
zs = zs_tensor
do_inversion = False
latnets = wts[skip].expand(1, -1, -1, -1)
editing_prompt = [sdxl_loras[random_lora_index]["trigger_word"]]
reverse_editing_direction = [False]
edit_warmup_steps = [2]
edit_guidance_scale = [sdxl_loras[random_lora_index]["edit_guidance_scale"]]
edit_threshold = [sdxl_loras[random_lora_index]["threshold"]]
editing_args = dict(
editing_prompt = editing_prompt,
reverse_editing_direction = reverse_editing_direction,
edit_warmup_steps=edit_warmup_steps,
edit_guidance_scale=edit_guidance_scale,
edit_threshold=edit_threshold,
edit_momentum_scale=0.3,
edit_mom_beta=0.6,
eta=1,)
sega_out = sd_pipe(prompt=tar_prompt, latents=latnets, guidance_scale = tar_cfg_scale,
# num_images_per_prompt=1,
# num_inference_steps=steps,
wts=wts, zs=zs[skip:], **editing_args)
#lora_repo = sdxl_loras[random_lora_index]["repo"]
#lora_desc = f"### LoRA Used To Edit this Image: {lora_repo}' }"
#lora_image = sdxl_loras[random_lora_index]["image"]
return sega_out.images[0], wts, zs, do_inversion, gr.update(height=512), gr.Column(elem_classes="output_column_reverse")
def randomize_seed_fn(seed, randomize_seed):
if randomize_seed:
seed = random.randint(0, np.iinfo(np.int32).max)
torch.manual_seed(seed)
return seed
def randomize():
seed = random.randint(0, np.iinfo(np.int32).max)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
def crop_image(image):
h, w, c = image.shape
if h < w:
offset = (w - h) // 2
image = image[:, offset:offset + h]
elif w < h:
offset = (h - w) // 2
image = image[offset:offset + w]
image = np.array(Image.fromarray(image).resize((1024, 1024)))
return image
########
# demo #
########
with gr.Blocks(css="style.css") as demo:
def reset_do_inversion():
return True
gr.HTML("""<img style="margin: 0 auto; width: 180px; margin-bottom: .5em" src="https://i.imgur.com/A4BP6Lx.png" alt="LEDITS SDXL LoRA Photobooth">""")
with gr.Box(elem_id="total_box"):
gr.HTML(
"""<h1>LEDITS SDXL LoRA Photobooth</h1>
<h3>Smile, take a pic 📷✨ and <code>it'll be inverted on SDXL and a random SDXL LoRA will be applied</code></h3>
""",
)
wts = gr.State()
zs = gr.State()
reconstruction = gr.State()
do_inversion = gr.State(value=True)
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
gr_lora_index = gr.State()
with gr.Row():
input_image = gr.Image(label="Input Image", interactive=True, source="webcam", height=512, width=512, elem_id="input_image")
with gr.Column(elem_classes="output_column") as output_column:
with gr.Row(visible=False) as loaded_lora:
lora_image = gr.Image(interactive=False, height=128, width=128, elem_id="lora_image", show_label=False, show_download_button=False)
lora_desc = gr.Markdown()
sega_edited_image = gr.Image(label=f"LEDITS Edited Image", interactive=False, elem_id="output_image", height=512, width=512)
with gr.Row():
run_button = gr.Button("Rerun with the same picture", visible=True, elem_id="run_again")
run_button.click(
fn=shuffle_lora,
inputs=[gr_sdxl_loras],
outputs=[gr_lora_index, lora_image, lora_desc, loaded_lora, sega_edited_image],
queue=False
).then(
fn=edit,
inputs=[gr_sdxl_loras,
input_image,
wts, zs,
do_inversion,
gr_lora_index
],
outputs=[sega_edited_image, wts, zs, do_inversion, sega_edited_image, output_column])
input_image.change(
fn = check_if_removed,
inputs = [input_image],
outputs = [loaded_lora, output_column, sega_edited_image],
queue=False,
show_progress=False
).then(
fn = block_if_removed,
inputs = [input_image],
queue=False,
show_progress=False
).success(
fn = reset_do_inversion,
outputs = [do_inversion],
queue = False).then(
fn=shuffle_lora,
inputs=[gr_sdxl_loras],
outputs=[gr_lora_index, lora_image, lora_desc, loaded_lora, sega_edited_image],
queue=False
).then(
fn=edit,
inputs=[gr_sdxl_loras,
input_image,
wts, zs,
do_inversion,
gr_lora_index
],
outputs=[sega_edited_image, wts, zs, do_inversion, sega_edited_image, output_column]
)
gr.HTML('''
<img src="https://iccv2023.thecvf.com/img/LogoICCV23V04.svg" width="400" style="margin: 0 auto; display: none" id='iccv_logo' />
''')
demo.queue()
demo.launch() |