Open_LLM_starchat_bot / app (15).py
ehristoforu's picture
Update app (15).py
2130300
raw
history blame
13.2 kB
import datetime
import os
import random
import re
from io import StringIO
import gradio as gr
import pandas as pd
from huggingface_hub import upload_file
from text_generation import Client
from dialogues import DialogueTemplate
from share_btn import (community_icon_html, loading_icon_html, share_btn_css,
share_js)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
API_TOKEN = os.environ.get("API_TOKEN", None)
DIALOGUES_DATASET = "HuggingFaceH4/starchat_playground_dialogues"
model2endpoint = {
"starchat-beta": "https://api-inference.huggingface.co/models/HuggingFaceH4/starchat-beta",
}
model_names = list(model2endpoint.keys())
def randomize_seed_generator():
seed = random.randint(0, 1000000)
return seed
def save_inputs_and_outputs(now, inputs, outputs, generate_kwargs, model):
buffer = StringIO()
timestamp = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f")
file_name = f"prompts_{timestamp}.jsonl"
data = {"model": model, "inputs": inputs, "outputs": outputs, "generate_kwargs": generate_kwargs}
pd.DataFrame([data]).to_json(buffer, orient="records", lines=True)
# Push to Hub
upload_file(
path_in_repo=f"{now.date()}/{now.hour}/{file_name}",
path_or_fileobj=buffer.getvalue().encode(),
repo_id=DIALOGUES_DATASET,
token=HF_TOKEN,
repo_type="dataset",
)
# Clean and rerun
buffer.close()
def get_total_inputs(inputs, chatbot, preprompt, user_name, assistant_name, sep):
past = []
for data in chatbot:
user_data, model_data = data
if not user_data.startswith(user_name):
user_data = user_name + user_data
if not model_data.startswith(sep + assistant_name):
model_data = sep + assistant_name + model_data
past.append(user_data + model_data.rstrip() + sep)
if not inputs.startswith(user_name):
inputs = user_name + inputs
total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip()
return total_inputs
def wrap_html_code(text):
pattern = r"<.*?>"
matches = re.findall(pattern, text)
if len(matches) > 0:
return f"```{text}```"
else:
return text
def has_no_history(chatbot, history):
return not chatbot and not history
def generate(
RETRY_FLAG,
model_name,
system_message,
user_message,
chatbot,
history,
temperature,
top_k,
top_p,
max_new_tokens,
repetition_penalty,
do_save=True,
):
client = Client(
model2endpoint[model_name],
headers={"Authorization": f"Bearer {API_TOKEN}"},
timeout=60,
)
# Don't return meaningless message when the input is empty
if not user_message:
print("Empty input")
if not RETRY_FLAG:
history.append(user_message)
seed = 42
else:
seed = randomize_seed_generator()
past_messages = []
for data in chatbot:
user_data, model_data = data
past_messages.extend(
[{"role": "user", "content": user_data}, {"role": "assistant", "content": model_data.rstrip()}]
)
if len(past_messages) < 1:
dialogue_template = DialogueTemplate(
system=system_message, messages=[{"role": "user", "content": user_message}]
)
prompt = dialogue_template.get_inference_prompt()
else:
dialogue_template = DialogueTemplate(
system=system_message, messages=past_messages + [{"role": "user", "content": user_message}]
)
prompt = dialogue_template.get_inference_prompt()
generate_kwargs = {
"temperature": temperature,
"top_k": top_k,
"top_p": top_p,
"max_new_tokens": max_new_tokens,
}
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
truncate=4096,
seed=seed,
stop_sequences=["<|end|>"],
)
stream = client.generate_stream(
prompt,
**generate_kwargs,
)
output = ""
for idx, response in enumerate(stream):
if response.token.special:
continue
output += response.token.text
if idx == 0:
history.append(" " + output)
else:
history[-1] = output
chat = [
(wrap_html_code(history[i].strip()), wrap_html_code(history[i + 1].strip()))
for i in range(0, len(history) - 1, 2)
]
# chat = [(history[i].strip(), history[i + 1].strip()) for i in range(0, len(history) - 1, 2)]
yield chat, history, user_message, ""
if HF_TOKEN and do_save:
try:
now = datetime.datetime.now()
current_time = now.strftime("%Y-%m-%d %H:%M:%S")
print(f"[{current_time}] Pushing prompt and completion to the Hub")
save_inputs_and_outputs(now, prompt, output, generate_kwargs, model_name)
except Exception as e:
print(e)
return chat, history, user_message, ""
examples = [
"How can I write a Python function to generate the nth Fibonacci number?",
"How do I get the current date using shell commands? Explain how it works.",
"What's the meaning of life?",
"Write a function in Javascript to reverse words in a given string.",
"Give the following data {'Name':['Tom', 'Brad', 'Kyle', 'Jerry'], 'Age':[20, 21, 19, 18], 'Height' : [6.1, 5.9, 6.0, 6.1]}. Can you plot one graph with two subplots as columns. The first is a bar graph showing the height of each person. The second is a bargraph showing the age of each person? Draw the graph in seaborn talk mode.",
"Create a regex to extract dates from logs",
"How to decode JSON into a typescript object",
"Write a list into a jsonlines file and save locally",
]
def clear_chat():
return [], []
def delete_last_turn(chat, history):
if chat and history:
chat.pop(-1)
history.pop(-1)
history.pop(-1)
return chat, history
def process_example(args):
for [x, y] in generate(args):
pass
return [x, y]
# Regenerate response
def retry_last_answer(
selected_model,
system_message,
user_message,
chat,
history,
temperature,
top_k,
top_p,
max_new_tokens,
repetition_penalty,
do_save,
):
if chat and history:
# Removing the previous conversation from chat
chat.pop(-1)
# Removing bot response from the history
history.pop(-1)
# Setting up a flag to capture a retry
RETRY_FLAG = True
# Getting last message from user
user_message = history[-1]
yield from generate(
RETRY_FLAG,
selected_model,
system_message,
user_message,
chat,
history,
temperature,
top_k,
top_p,
max_new_tokens,
repetition_penalty,
do_save,
)
with gr.Blocks(analytics_enabled=False, css="style.css") as demo:
with gr.Row():
with gr.Column():
gr.Image("StarChat_logo.png", elem_id="banner-image", show_label=False, show_share_btn=False, show_download_btn=False)
with gr.Row():
with gr.Column():
gr.DuplicateButton(value='Duplicate Space for private use',
elem_id='duplicate-button')
with gr.Row():
selected_model = gr.Radio(choices=model_names, value=model_names[0], label="Current Model", interactive=False)
with gr.Row():
with gr.Box():
output = gr.Markdown()
chatbot = gr.Chatbot(elem_id="chat-message", label="Playground")
with gr.Row():
with gr.Column(scale=3):
user_message = gr.Textbox(placeholder="Enter your message here", show_label=False, elem_id="q-input", lines=2)
with gr.Row():
send_button = gr.Button("▶️ Send", elem_id="send-btn", visible=True)
regenerate_button = gr.Button("🔄 Regenerate", elem_id="retry-btn", visible=True)
delete_turn_button = gr.Button("↩️ Delete last turn", elem_id="delete-btn", visible=True)
clear_chat_button = gr.Button("🗑 Clear chat", elem_id="clear-btn", visible=True)
with gr.Accordion(label="Parameters", open=False, elem_id="parameters-accordion"):
system_message = gr.Textbox(
elem_id="system-message",
placeholder="Below is a conversation between a human user and a helpful AI coding assistant.",
label="System Prompt",
lines=2,
)
temperature = gr.Slider(
label="Temperature",
value=0.2,
minimum=0.0,
maximum=1.0,
step=0.1,
interactive=True,
info="Higher values produce more diverse outputs",
)
top_k = gr.Slider(
label="Top-k",
value=50,
minimum=0.0,
maximum=100,
step=1,
interactive=True,
info="Sample from a shortlist of top-k tokens",
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.95,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=512,
minimum=0,
maximum=1024,
step=4,
interactive=True,
info="The maximum numbers of new tokens",
)
repetition_penalty = gr.Slider(
label="Repetition Penalty",
value=1.2,
minimum=0.0,
maximum=10,
step=0.1,
interactive=True,
info="The parameter for repetition penalty. 1.0 means no penalty.",
)
do_save = gr.Checkbox(
value=True,
label="Store data",
info="You agree to the storage of your prompt and generated text for research and development purposes:",
)
# with gr.Group(elem_id="share-btn-container"):
# community_icon = gr.HTML(community_icon_html, visible=True)
# loading_icon = gr.HTML(loading_icon_html, visible=True)
# share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
with gr.Row():
gr.Examples(
examples=examples,
inputs=[user_message],
cache_examples=False,
fn=process_example,
outputs=[output],
)
history = gr.State([])
RETRY_FLAG = gr.Checkbox(value=False, visible=False)
# To clear out "message" input textbox and use this to regenerate message
last_user_message = gr.State("")
user_message.submit(
generate,
inputs=[
RETRY_FLAG,
selected_model,
system_message,
user_message,
chatbot,
history,
temperature,
top_k,
top_p,
max_new_tokens,
repetition_penalty,
do_save,
],
outputs=[chatbot, history, last_user_message, user_message],
)
send_button.click(
generate,
inputs=[
RETRY_FLAG,
selected_model,
system_message,
user_message,
chatbot,
history,
temperature,
top_k,
top_p,
max_new_tokens,
repetition_penalty,
do_save,
],
outputs=[chatbot, history, last_user_message, user_message],
)
regenerate_button.click(
retry_last_answer,
inputs=[
selected_model,
system_message,
user_message,
chatbot,
history,
temperature,
top_k,
top_p,
max_new_tokens,
repetition_penalty,
do_save,
],
outputs=[chatbot, history, last_user_message, user_message],
)
delete_turn_button.click(delete_last_turn, [chatbot, history], [chatbot, history])
clear_chat_button.click(clear_chat, outputs=[chatbot, history])
selected_model.change(clear_chat, outputs=[chatbot, history])
# share_button.click(None, [], [], _js=share_js)
demo.queue(concurrency_count=16).launch(show_api=False)