|
|
|
|
|
import os |
|
import random |
|
import uuid |
|
|
|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
import spaces |
|
import torch |
|
from diffusers import ( |
|
StableDiffusionXLPipeline, |
|
StableDiffusionXLInpaintPipeline, |
|
DPMSolverMultistepScheduler |
|
) |
|
DESCRIPTION = """ |
|
# [Visionix Playground](https://huggingface.co/spaces/ehristoforu/Visionix-Playground) |
|
|
|
""" |
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>" |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
USE_TORCH_COMPILE = 0 |
|
ENABLE_CPU_OFFLOAD = 0 |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
"ehristoforu/Visionix-alpha", |
|
torch_dtype=torch.float16, |
|
use_safetensors=True, |
|
) |
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) |
|
pipe.to('cuda') |
|
pipe_inpaint = StableDiffusionXLInpaintPipeline.from_single_file( |
|
"https://huggingface.co/ehristoforu/Visionix-alpha-inpainting/blob/main/Visionix-alpha-inpainting.safetensors", |
|
torch_dtype=torch.float16, |
|
use_safetensors=True, |
|
) |
|
pipe_inpaint.scheduler = DPMSolverMultistepScheduler.from_config(pipe_inpaint.scheduler.config) |
|
pipe_inpaint.to('cuda') |
|
|
|
def get_model(model): |
|
if model == "Alpha inpaint": |
|
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) |
|
else: |
|
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) |
|
|
|
|
|
def save_image(img): |
|
unique_name = str(uuid.uuid4()) + ".png" |
|
img.save(unique_name) |
|
return unique_name |
|
|
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
|
|
@spaces.GPU(durarion=50, enable_queue=True) |
|
def generate( |
|
model, |
|
inpaint_image, |
|
mask_image, |
|
blur_factor, |
|
strength, |
|
prompt: str, |
|
negative_prompt: str = "", |
|
use_negative_prompt: bool = False, |
|
seed: int = 0, |
|
width: int = 1024, |
|
height: int = 1024, |
|
guidance_scale: float = 5.5, |
|
randomize_seed: bool = False, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
|
|
pipe.to(device) |
|
seed = int(randomize_seed_fn(seed, randomize_seed)) |
|
|
|
if not use_negative_prompt: |
|
negative_prompt = "" |
|
images = None |
|
if model == "Alpha": |
|
images = pipe( |
|
prompt=prompt, |
|
negative_prompt=f"{negative_prompt}", |
|
width=width, |
|
height=height, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=25, |
|
num_images_per_prompt=1, |
|
output_type="pil", |
|
).images |
|
elif model == "Alpha inpaint": |
|
blurred_mask = pipe_inpaint.mask_processor.blur(mask_image, blur_factor=blur_factor) |
|
images = pipe_inpaint( |
|
prompt=prompt, |
|
image=inpaint_image, |
|
mask_image=blurred_mask, |
|
negative_prompt=negative_prompt, |
|
width=width, |
|
height=height, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=25, |
|
strength=strength, |
|
num_images_per_prompt=1, |
|
output_type="pil", |
|
).images |
|
|
|
image_paths = [save_image(img) for img in images] |
|
print(image_paths) |
|
return image_paths, seed |
|
|
|
|
|
|
|
|
|
examples = [ |
|
"neon holography crystal cat", |
|
"a cat eating a piece of cheese", |
|
"an astronaut riding a horse in space", |
|
"a cartoon of a boy playing with a tiger", |
|
"a cute robot artist painting on an easel, concept art", |
|
"a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone" |
|
] |
|
|
|
css = ''' |
|
.gradio-container{max-width: 560px !important} |
|
h1{text-align:center} |
|
footer { |
|
visibility: hidden |
|
} |
|
''' |
|
with gr.Blocks(title="Visionix Playground", css=css) as demo: |
|
gr.Markdown(DESCRIPTION) |
|
gr.DuplicateButton( |
|
value="Duplicate Space for private use", |
|
elem_id="duplicate-button", |
|
visible=False, |
|
) |
|
|
|
with gr.Row(): |
|
model = gr.Radio( |
|
label="Model", |
|
choices=["Alpha", "Alpha inpaint"], |
|
value="Alpha", |
|
interactive=True, |
|
) |
|
|
|
md_mask = gr.Markdown(""" |
|
⚠️ To generate an inpaint mask, go [here](https://huggingface.co/spaces/ehristoforu/inpaint-mask-maker). |
|
""", visible=False) |
|
inpaint_image = gr.Image(label="Inpaint Image", interactive=True, scale=5, visible=False, type="pil") |
|
mask_image = gr.Image(label="Mask Image", interactive=True, scale=5, visible=False, type="pil") |
|
|
|
blur_factor = gr.Slider(label="Mask Blur Factor", minimum=0, maximum=100, value=4, step=1, interactive=True, visible=False) |
|
strength = gr.Slider(label="Denoising Strength", minimum=0.00, maximum=1.00, value=0.70, step=0.01, interactive=True, visible=False) |
|
|
|
|
|
with gr.Group(): |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run", scale=0) |
|
result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False) |
|
with gr.Accordion("Advanced options", open=False): |
|
with gr.Row(): |
|
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=8, |
|
lines=6, |
|
value="cartoon, 3D, disfigured, bad, art, deformed, extra limbs, weird, blurry, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn, hands, poorly drawn face, mutation, ugly, bad, anatomy, bad proportions, extra limbs, clone, clone-faced, cross proportions, missing arms, malformed limbs, missing legs, mutated, hands, fused fingers, too many fingers, photo shop, video game, ugly, tiling, cross-eye, mutation of eyes, long neck, bonnet, hat, beanie, cap, B&W", |
|
placeholder="Enter a negative prompt", |
|
visible=True, |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
visible=True |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Row(visible=True): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=512, |
|
maximum=2048, |
|
step=8, |
|
value=1024, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=512, |
|
maximum=2048, |
|
step=8, |
|
value=1024, |
|
) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=0.1, |
|
maximum=20, |
|
step=0.1, |
|
value=5.5, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=prompt, |
|
outputs=[result, seed], |
|
fn=generate, |
|
cache_examples=False, |
|
) |
|
|
|
use_negative_prompt.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=use_negative_prompt, |
|
outputs=negative_prompt, |
|
api_name=False, |
|
) |
|
|
|
model.change( |
|
fn=get_model, |
|
inputs=model, |
|
outputs=[md_mask, inpaint_image, mask_image, blur_factor, strength], |
|
api_name=False, |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
prompt.submit, |
|
negative_prompt.submit, |
|
run_button.click, |
|
], |
|
fn=generate, |
|
inputs=[ |
|
model, |
|
inpaint_image, |
|
mask_image, |
|
blur_factor, |
|
strength, |
|
prompt, |
|
negative_prompt, |
|
use_negative_prompt, |
|
seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
randomize_seed, |
|
], |
|
outputs=[result, seed], |
|
api_name="run", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch(show_api=False, debug=False) |