Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +28 -0
- potato_leaf_disease.h5 +3 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from tensorflow.keras.models import load_model
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
model=load_model('potato_leaf_disease.h5', compile=False)
|
7 |
+
|
8 |
+
def process_image(img):
|
9 |
+
img=img.resize((170,170)) #boyutunu 170*170 pixel yaptık
|
10 |
+
img=np.array(img)
|
11 |
+
img=img/255.0 #Normalize ettik
|
12 |
+
img=np.expand_dims(img,axis=0)
|
13 |
+
return img
|
14 |
+
|
15 |
+
st.title('Potato Leaf Disease Classification:potato:')
|
16 |
+
st.write('Pick an image and It will predict the disease')
|
17 |
+
|
18 |
+
file=st.file_uploader('Upload an image', type=['jpg','jpeg','png'])
|
19 |
+
|
20 |
+
if file is not None:
|
21 |
+
img=Image.open(file)
|
22 |
+
st.image(img,caption='Uploaded image')
|
23 |
+
image=process_image(img)
|
24 |
+
prediction=model.predict(image)
|
25 |
+
predicted_class=np.argmax(prediction)
|
26 |
+
|
27 |
+
class_names=['Early_Blight','Healthy','Late_Blight']
|
28 |
+
st.write(class_names[predicted_class])
|
potato_leaf_disease.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1967bd4b9aa031170d6440d8bfad7564a24a3da1b6e37bbe4f71a163772b0e7
|
3 |
+
size 165527408
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
tensorflow
|