eljanmahammadli commited on
Commit
a1918ea
·
1 Parent(s): 90aa72c

Add application file

Browse files
Files changed (2) hide show
  1. app.py +101 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import pipeline
4
+
5
+ model_name = "eljanmahammadli/AzLlama-152M-Alpaca"
6
+ model = pipeline("text-generation", model=model_name, torch_dtype=torch.float16)
7
+ logo_path = "/Users/eljan/Documents/AzLlama/AzLlama-logo.webp"
8
+
9
+
10
+ def get_prompt(question):
11
+ base_instruction = "Aşağıda tapşırığı təsvir edən təlimat və əlavə kontekst təmin edən giriş verilmiştir. Sorğunu uyğun şəkildə tamamlayan cavab yazın."
12
+ prompt = f"""{base_instruction}
13
+
14
+ ### Təlimat:
15
+ {question}
16
+
17
+ ### Cavab:
18
+ """
19
+ return prompt
20
+
21
+
22
+ def get_answer(llm_output):
23
+ return llm_output.split("### Cavab:")[1].strip()
24
+
25
+
26
+ def answer_question(history, temperature, top_p, repetition_penalty, top_k, question):
27
+ model_params = {
28
+ "temperature": temperature,
29
+ "top_p": top_p,
30
+ "repetition_penalty": repetition_penalty,
31
+ "top_k": top_k,
32
+ "max_length": 512, # Adjust based on your needs
33
+ "do_sample": True,
34
+ }
35
+ prompt = get_prompt(question)
36
+ llm_output = model(prompt, **model_params)[0]
37
+ answer = get_answer(llm_output["generated_text"])
38
+ divider = "\n\n" if history else ""
39
+ print(answer)
40
+ new_history = history + divider + f"USER: {question}\nASSISTANT: {answer}\n"
41
+ return new_history, "" # Return updated history and clear the question input
42
+
43
+
44
+ def send_action(_=None):
45
+ send_button.click()
46
+
47
+
48
+ with gr.Blocks() as app:
49
+ gr.Markdown("# AzLlama-150M Chatbot\n\n")
50
+
51
+ with gr.Row():
52
+ with gr.Column(scale=0.2, min_width=200):
53
+ gr.Markdown("### Model Logo")
54
+ gr.Image(
55
+ value=logo_path,
56
+ )
57
+ # write info about the model
58
+ gr.Markdown(
59
+ "### Model Info\n"
60
+ "This model is a 150M paramater LLaMA2 model trained from scratch on Azerbaijani text. It can be used to generate text based on the given prompt. "
61
+ )
62
+ with gr.Column(scale=0.6):
63
+ gr.Markdown("### Chat with the Assistant")
64
+ history = gr.Textbox(
65
+ label="Chat History", value="", lines=20, interactive=False
66
+ )
67
+ question = gr.Textbox(
68
+ label="Your question",
69
+ placeholder="Type your question and press enter",
70
+ )
71
+ send_button = gr.Button("Send")
72
+ with gr.Column(scale=0.2, min_width=200):
73
+ gr.Markdown("### Model Settings")
74
+ temperature = gr.Slider(
75
+ minimum=0.1, maximum=1.0, value=0.9, label="Temperature"
76
+ )
77
+ gr.Markdown(
78
+ "Controls the randomness of predictions. Lower values make the model more deterministic."
79
+ )
80
+ top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top P")
81
+ gr.Markdown(
82
+ "Nucleus sampling. Lower values focus on more likely predictions."
83
+ )
84
+ repetition_penalty = gr.Slider(
85
+ minimum=1.0, maximum=2.0, value=1.2, label="Repetition Penalty"
86
+ )
87
+ gr.Markdown(
88
+ "Penalizes repeated words. Higher values discourage repetition."
89
+ )
90
+ top_k = gr.Slider(minimum=0, maximum=100, value=50, label="Top K")
91
+ gr.Markdown("Keeps only the top k predictions. Set to 0 for no limit.")
92
+
93
+ question.submit(send_action)
94
+
95
+ send_button.click(
96
+ fn=answer_question,
97
+ inputs=[history, temperature, top_p, repetition_penalty, top_k, question],
98
+ outputs=[history, question],
99
+ )
100
+
101
+ app.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch
2
+ gradio
3
+ transformers