File size: 1,533 Bytes
ff9863c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from fastapi import FastAPI, Request
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from huggingface_hub import login
import os

print("Google Gemma 2 Chatbot is starting...")

# read access token from environment variable
access_token = os.getenv('HF_TOKEN')
login(access_token)

model_id = "google/gemma-2-9b-it"

print("Model loading started")
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
print("Model loading completed")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Selected device:", device)

app = FastAPI()


@app.get('/')
def home():
    return {"hello": "Bitfumes"}


@app.post('/ask')
async def ask(request: Request):
    data = await request.json()
    prompt = data.get("prompt")
    if not prompt:
        return {"error": "Prompt is missing"}

    print("Device of the model:", model.device)
    messages = [
        {"role": "user", "content": f"{prompt}"},
    ]
    print("Messages:", messages)
    print("Tokenizer process started")
    input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True).to("cuda")
    print("Tokenizer process completed")

    print("Model process started")
    outputs = model.generate(**input_ids, max_new_tokens=256)

    print("Tokenizer decode process started")
    answer = tokenizer.decode(outputs[0]).split("<end_of_turn>")[1].strip()

    return {"answer": answer}