Spaces:
Runtime error
Runtime error
File size: 5,944 Bytes
97ca63a 96b70f7 78938b7 97ca63a 78938b7 97ca63a 78938b7 97ca63a 78938b7 97ca63a 78938b7 97ca63a 78938b7 97ca63a 78938b7 97ca63a 78938b7 97ca63a 78938b7 97ca63a 78938b7 97ca63a 78938b7 97ca63a 78938b7 97ca63a 78938b7 97ca63a 78938b7 97ca63a 78938b7 97ca63a 78938b7 97ca63a 78938b7 97ca63a 78938b7 97ca63a 78938b7 97ca63a 78938b7 97ca63a 78938b7 97ca63a 78938b7 97ca63a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import gradio as gr
import os
from interface_utils import *
maxim = 'quality'
submaxims = ["The response is factual and supported by adequate evidence whenever possible."]
checkbox_choices = [
["Yes", "No", "NA"]
]
conversation_data_sliced = load_from_jsonl('./data/conversations_unlabeled_sliced.jsonl')
max_conversation_length = max([len(conversation['transcript']) for conversation in conversation_data_sliced])
conversation = get_conversation(conversation_data_sliced)
def save_labels(conv_id, slice_idx, skipped, submaxim_0=None):
data = {
'conv_id': conv_id,
'slice_idx': int(slice_idx),
'maxim': maxim,
'skipped': skipped,
'submaxim_0': submaxim_0,
}
os.makedirs("./labels", exist_ok=True)
with open(f"./labels/{maxim}_human_labels_{conv_id}_{slice_idx}.json", 'w') as f:
json.dump(data, f, indent=4)
def update_interface(new_conversation):
new_conv_id = new_conversation['conv_id']
new_slice_idx = new_conversation['slice_idx']
new_transcript = new_conversation['transcript']
markdown_blocks = [None] * max_conversation_length
for i in range(max_conversation_length):
if i < len(new_transcript) and new_transcript[i]['speaker'] != '':
markdown_blocks[i] = gr.Markdown(
f""" **{new_transcript[i]['speaker']}**: {new_transcript[i]['response']}""",
visible=True)
else:
markdown_blocks[i] = gr.Markdown("", visible=False)
new_last_response = gr.Text(value=get_last_response(new_transcript),
label="",
lines=1,
container=False,
interactive=False,
autoscroll=True,
visible=True)
new_radio_0_base = gr.Radio(label=submaxims[0],
choices=checkbox_choices[0],
value=None,
visible=True)
conv_len = gr.Number(value=len(new_transcript), visible=False)
return [new_conv_id] + [new_slice_idx] + list(markdown_blocks) + [new_last_response] + [new_radio_0_base] + [conv_len]
def submit(*args):
conv_id = args[0]
slice_idx = args[1]
submaxim_0 = args[-2]
save_labels(conv_id, slice_idx, skipped=False, submaxim_0=submaxim_0)
new_conversation = get_conversation(conversation_data_sliced)
return update_interface(new_conversation)
def skip(*args):
conv_id = args[0]
slice_idx = args[1]
save_labels(conv_id, slice_idx, skipped=True)
new_conversation = get_conversation(conversation_data_sliced)
return update_interface(new_conversation, slice_idx)
with gr.Blocks(theme=gr.themes.Default()) as interface:
conv_id = conversation['conv_id']
slice_idx = conversation['slice_idx']
transcript = conversation['transcript']
conv_len = gr.Number(value=len(transcript), visible=False)
markdown_blocks = [None] * max_conversation_length
with gr.Column(scale=1, min_width=600):
with gr.Group():
gr.Markdown("""<span style='font-size: 16px;'> **Conversational context** </span>""",
visible=True)
for i in range(max_conversation_length):
if i < len(transcript):
markdown_blocks[i] = gr.Markdown(
f""" **{transcript[i]['speaker']}**: {transcript[i]['response']}""")
else:
markdown_blocks[i] = gr.Markdown("")
if i >= conv_len.value:
markdown_blocks[i].visible = False
with gr.Row():
with gr.Group(elem_classes="bottom-aligned-group"):
speaker_adapted = gr.Markdown(
f"""<span style='font-size: 16px;'> **Response to label** </span>""",
visible=True)
last_response = gr.Textbox(value=get_last_response(transcript),
label="",
lines=1,
container=False,
interactive=False,
autoscroll=True,
visible=True)
radio_submaxim_0_base = gr.Radio(label=submaxims[0],
choices=checkbox_choices[0],
value=None,
visible=True)
submit_button = gr.Button("Submit")
skip_button = gr.Button("Skip")
conv_id_element = gr.Text(value=conv_id, visible=False)
slice_idx_element = gr.Text(value=slice_idx, visible=False)
input_list = [conv_id_element] + \
[slice_idx_element] + \
markdown_blocks + \
[last_response] + \
[radio_submaxim_0_base] + \
[conv_len]
submit_button.click(
fn=submit,
inputs=input_list,
outputs=[conv_id_element,
slice_idx_element,
*markdown_blocks,
last_response,
radio_submaxim_0_base,
conv_len]
)
skip_button.click(
fn=skip,
inputs=input_list,
outputs=[conv_id_element,
slice_idx_element,
*markdown_blocks,
last_response,
radio_submaxim_0_base,
conv_len]
)
css = """
#textbox_id textarea {
background-color: white;
}
.bottom-aligned-group {
display: flex;
flex-direction: column;
justify-content: flex-end;
height: 100%;
}
"""
interface.css = css
interface.launch()
|