Spaces:
Sleeping
Sleeping
erinmikail
commited on
update with appropriate keys + context builder
Browse files
app.py
CHANGED
@@ -1,38 +1,38 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
import ldclient
|
4 |
-
from ldclient
|
5 |
|
6 |
# Initialize LaunchDarkly client
|
7 |
-
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
"
|
12 |
-
|
13 |
-
"
|
14 |
-
|
15 |
-
|
|
|
|
|
16 |
|
17 |
-
# Create a function to get the active model from LaunchDarkly
|
18 |
-
def get_active_model():
|
19 |
-
if ld_client.variation("use_bert", {"key": "user"}):
|
20 |
-
return pipeline("sentiment-analysis", model="bert-base-uncased"), "bert-base-uncased"
|
21 |
-
elif ld_client.variation("use_roberta", {"key": "user"}):
|
22 |
-
return pipeline("sentiment-analysis", model="roberta-base"), "roberta-base"
|
23 |
-
elif ld_client.variation("use_distilbert", {"key": "user"}):
|
24 |
-
return pipeline("sentiment-analysis", model="distilbert-base-uncased"), "distilbert-base-uncased"
|
25 |
-
elif ld_client.variation("use_albert", {"key": "user"}):
|
26 |
-
return pipeline("sentiment-analysis", model="albert-base-v2"), "albert-base-v2"
|
27 |
-
else:
|
28 |
-
return pipeline("sentiment-analysis", model="distilbert-base-uncased"), "distilbert-base-uncased" # Default model
|
29 |
|
30 |
# Streamlit app
|
31 |
-
st.title("Sentiment Analysis Demo")
|
|
|
32 |
user_input = st.text_area("Enter text for sentiment analysis:")
|
33 |
|
34 |
if st.button("Analyze"):
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
result = model(user_input)
|
37 |
-
st.write(
|
38 |
-
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
import ldclient
|
4 |
+
from ldclient import LDClient, Context
|
5 |
|
6 |
# Initialize LaunchDarkly client
|
7 |
+
ldclient.set_config(Config("LAUNCHDARKLY_SDK_KEY"))
|
8 |
+
client = ldclient.get()
|
9 |
|
10 |
+
# Function to get the AI model configuration from LaunchDarkly
|
11 |
+
def get_model_config():
|
12 |
+
flag_key = "swap-sentiment-models" # Replace with your flag key
|
13 |
+
# Create context using Context builder
|
14 |
+
context = Context.builder("context-key-123abc").name("Sandy").build()
|
15 |
+
flag_variation = ld_client.variation(flag_key, context, default={})
|
16 |
+
|
17 |
+
model_id = flag_variation.get("modelID", "distilbert-base-uncased")
|
18 |
+
return model_id
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# Streamlit app
|
22 |
+
st.title("Sentiment Analysis Demo with AI Model Flags")
|
23 |
+
|
24 |
user_input = st.text_area("Enter text for sentiment analysis:")
|
25 |
|
26 |
if st.button("Analyze"):
|
27 |
+
model_id = get_model_config()
|
28 |
+
model = pipeline("sentiment-analysis", model=model_id)
|
29 |
+
|
30 |
+
# Display model details
|
31 |
+
st.write(f"Using model: {model_id}")
|
32 |
+
|
33 |
+
# Perform sentiment analysis
|
34 |
result = model(user_input)
|
35 |
+
st.write(result)
|
36 |
+
|
37 |
+
# Closing the LD client
|
38 |
+
ld_client.close()
|