Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Load model and tokenizer directly | |
model_name = "jdowling/lora_model" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
# Move the model to the appropriate device (GPU if available, else CPU) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Prepare prompt with history | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
# Convert conversation into a single input string | |
prompt = f"{system_message}\n" | |
for turn in messages[1:]: | |
if turn["role"] == "user": | |
prompt += f"User: {turn['content']}\n" | |
elif turn["role"] == "assistant": | |
prompt += f"Assistant: {turn['content']}\n" | |
prompt += "Assistant:" | |
# Tokenize input | |
inputs = tokenizer(prompt, return_tensors="pt").to(device) | |
# Generate response | |
output = model.generate( | |
inputs["input_ids"], | |
max_length=inputs["input_ids"].shape[1] + max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
pad_token_id=tokenizer.eos_token_id, | |
) | |
# Decode response and extract the new assistant message | |
response = tokenizer.decode(output[0], skip_special_tokens=True) | |
response = response[len(prompt):].strip() # Strip the input part from the response | |
yield response | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |