Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Load your model and tokenizer from Hugging Face Hub (forcing CPU usage) | |
# model_name = "PierreJousselin/lora_model" # Replace with the name you used on Hugging Face | |
# model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cpu") # Force model to load on CPU | |
model_id = "unsloth/Phi-3.5-mini-instruct" | |
peft_model_id = "eronariodito/SFT_LAB2_ID2223" | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
model.load_adapter(peft_model_id) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
# Ensure pad_token_id is set to eos_token_id to avoid errors | |
model.config.pad_token_id = model.config.eos_token_id | |
# Function for generating responses using the model | |
def generate_response(prompt): | |
# Tokenize input prompt | |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=128) | |
# Ensure the inputs are moved to the CPU | |
input_ids = inputs["input_ids"].to("cpu") | |
print(input_ids) | |
# Generate output (ensure it's on CPU) | |
output = model.generate(input_ids, max_length=150, num_return_sequences=1,pad_token_id=tokenizer.eos_token_id) | |
# Decode and return response | |
response = tokenizer.decode(output[0], skip_special_tokens=True) | |
print(output) | |
return response | |
# Create a Gradio interface with a "Generate" button | |
iface = gr.Interface( | |
fn=generate_response, # Function to call for generating response | |
inputs=gr.Textbox(label="Input Prompt"), # Input type (text box for prompt) | |
outputs=gr.Textbox(label="Generated Response"), # Output type (text box for response) | |
live=False, # Disable live update; only update when button is clicked | |
allow_flagging="never" # Prevent flagging (optional, if you don't need it) | |
) | |
# Launch the interface with a "Generate" button | |
iface.launch(share=True) # You can set share=True if you want a public link |