File size: 2,216 Bytes
63cbd44
 
087ea1d
 
 
63cbd44
 
 
 
087ea1d
 
 
 
 
7dcac62
087ea1d
 
 
 
 
 
 
ca94c20
087ea1d
 
69cc152
087ea1d
 
 
 
 
 
 
 
 
 
7dcac62
087ea1d
 
 
 
 
 
 
 
 
5447003
087ea1d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
title: README
emoji: πŸ‘€
colorFrom: indigo
colorTo: yellow
sdk: static
pinned: false
---

<div class="grid lg:grid-cols-3 gap-x-4 gap-y-7">
	<p class="lg:col-span-3">
    The End-to-end Speech Benchmark (ESB) is a benchmark for assessing ASR systems on a collection of eight speech recognition datasets. ESB consists of:
    </p>
	<a href="https://huggingface.co/datasets/esb/datasets" class="block overflow-hidden group">
		<div class="flex items-center h-40 rounded-lg px-4 mb-2" style="background-color: #FAFBFC;">
			<pre
				class="break-words leading-1 whitespace-pre-line text-xl text-gray-800">
	πŸ€— Datasets
		</pre>
		</div>
	</a>
	<a
		href="https://huggingface.co/models?other=esb&sort=modified"
		class="block overflow-hidden"
	>
		<div class="flex items-center h-40 rounded-lg px-4 mb-2" style="background-color: #FAFBFC;">
			<pre
				class="break-words leading-1 whitespace-pre-line text-xl text-gray-800">
	πŸ“œ Official Checkpoints
		</pre>
		</div>
	</a>
	<a
		href="https://huggingface.co/spaces/esb/leaderboard"
		class="block overflow-hidden group"
	>
		<div class="flex items-center h-40 rounded-lg px-4 mb-2" style="background-color: #FAFBFC;">
			<pre
				class="break-words leading-1 whitespace-pre-line text-xl text-gray-800">
	πŸ† Leaderboard
		</pre>
		</div>
	</a>
    <p class="lg:col-span-3">
        The ESB datasets are sourced from 11 different domains and cover a range of audio and text distributions (speaking styles, background noise, transcription requirements). There is no restriction on architecture or training data: any system capable of processing audio inputs and generating the corresponding transcriptions is eligible to participate. The only constraint is that the same training and evaluation algorithms must be used across datasets and systems may not use any dataset-specific pre- or post-processing. The objective of ESB is to encourage the research of more generalisable, multi-domain ASR systems. <br />
        <br />
        ESB was proposed in <i>ESB: A Benchmark For Multi-Domain End-to-End Speech Recognition</i>. For more information, see the official paper on <a  href="https://arxiv.org/abs/2210.13352"  class="underline">Arxiv</a>.
	</p>
</div>