Spaces:
Running
Running
File size: 2,216 Bytes
63cbd44 087ea1d 63cbd44 087ea1d 7dcac62 087ea1d ca94c20 087ea1d 69cc152 087ea1d 7dcac62 087ea1d 5447003 087ea1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
title: README
emoji: π
colorFrom: indigo
colorTo: yellow
sdk: static
pinned: false
---
<div class="grid lg:grid-cols-3 gap-x-4 gap-y-7">
<p class="lg:col-span-3">
The End-to-end Speech Benchmark (ESB) is a benchmark for assessing ASR systems on a collection of eight speech recognition datasets. ESB consists of:
</p>
<a href="https://huggingface.co/datasets/esb/datasets" class="block overflow-hidden group">
<div class="flex items-center h-40 rounded-lg px-4 mb-2" style="background-color: #FAFBFC;">
<pre
class="break-words leading-1 whitespace-pre-line text-xl text-gray-800">
π€ Datasets
</pre>
</div>
</a>
<a
href="https://huggingface.co/models?other=esb&sort=modified"
class="block overflow-hidden"
>
<div class="flex items-center h-40 rounded-lg px-4 mb-2" style="background-color: #FAFBFC;">
<pre
class="break-words leading-1 whitespace-pre-line text-xl text-gray-800">
π Official Checkpoints
</pre>
</div>
</a>
<a
href="https://huggingface.co/spaces/esb/leaderboard"
class="block overflow-hidden group"
>
<div class="flex items-center h-40 rounded-lg px-4 mb-2" style="background-color: #FAFBFC;">
<pre
class="break-words leading-1 whitespace-pre-line text-xl text-gray-800">
π Leaderboard
</pre>
</div>
</a>
<p class="lg:col-span-3">
The ESB datasets are sourced from 11 different domains and cover a range of audio and text distributions (speaking styles, background noise, transcription requirements). There is no restriction on architecture or training data: any system capable of processing audio inputs and generating the corresponding transcriptions is eligible to participate. The only constraint is that the same training and evaluation algorithms must be used across datasets and systems may not use any dataset-specific pre- or post-processing. The objective of ESB is to encourage the research of more generalisable, multi-domain ASR systems. <br />
<br />
ESB was proposed in <i>ESB: A Benchmark For Multi-Domain End-to-End Speech Recognition</i>. For more information, see the official paper on <a href="https://arxiv.org/abs/2210.13352" class="underline">Arxiv</a>.
</p>
</div> |