File size: 1,998 Bytes
9b879f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image


def preprocess(mask_values, pil_img, scale, is_mask):
        pil_img=Image.fromarray(pil_img)
        w, h = pil_img.size
        newW, newH = int(scale * w), int(scale * h)
        pil_img = pil_img.resize((newW, newH))
        img = np.asarray(pil_img)

        if is_mask:
            mask = np.zeros((newH, newW), dtype=np.int64)
            for i, v in enumerate(mask_values):
                if img.ndim == 2:
                    mask[img == v] = i
                else:
                    mask[(img == v).all(-1)] = i

            return mask

        else:
            if img.ndim == 2:
                img = img[np.newaxis, ...]
            else:
                img = img.transpose((2, 0, 1))

            if (img > 1).any():
                img = img / 255.0

            return img
def predict_img(net,
                full_img,
                device,
                scale_factor=1,
                out_threshold=0.5):
    net.eval()
    img = torch.from_numpy(preprocess(None, full_img, scale_factor, is_mask=False))
    img = img.unsqueeze(0)
    img = img.to(device=device, dtype=torch.float32)

    with torch.no_grad():
        output = net(img).cpu()
        
        if net.n_classes > 1:
            mask = output.argmax(dim=1)
        else:
            mask = torch.sigmoid(output) > out_threshold

    return mask[0].long().squeeze().numpy()






def mask_to_image(mask: np.ndarray, mask_values):
    if isinstance(mask_values[0], list):
        out = np.zeros((mask.shape[-2], mask.shape[-1], len(mask_values[0])), dtype=np.uint8)
    elif mask_values == [0, 1]:
        out = np.zeros((mask.shape[-2], mask.shape[-1]), dtype=bool)
    else:
        out = np.zeros((mask.shape[-2], mask.shape[-1]), dtype=np.uint8)

    if mask.ndim == 3:
        mask = np.argmax(mask, axis=0)

    for i, v in enumerate(mask_values):
        out[mask == i] = v

    return Image.fromarray(out)