INVOHIDE_inisw8 / seg.py
esun-choi's picture
Update seg.py
088dab0
from dino.predict import predict_img,mask_to_image
import torch
from PIL import Image
import numpy as np
import cv2
# 솑μž₯뢀뢄을 crop ν•˜κΈ° μœ„ν•œ μ½”λ“œ
# dinov2 λͺ¨λΈμ„ segmentation λͺ¨λΈλ‘œ ν™œμš©ν•˜μ˜€κ³  이λ₯Ό train ν•˜μ—¬μ„œ pretrained weightλ₯Ό weight 폴더에 μ €μž₯ν•˜κ³  μ•„λž˜μ™€ 같이 loadν•©λ‹ˆλ‹€.
def segmentation(img):
#device=torch.device("cuda")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net=torch.load("weights/dinov2_model.pth")
mask_values=[[0, 0, 0], [255, 255, 255]]
mask=predict_img(net,img,device,scale_factor=1,out_threshold=0.5)
result = mask_to_image(mask, mask_values)
result=np.array(result)
return result
# def calculate_white_area_percentage(mask):
# total_pixels = mask.size
# print(total_pixels)
# white_pixels = np.sum(np.all(mask >100, axis=-1))
# white_area_percentage = (white_pixels / total_pixels) * 100
# return white_area_percentage*3
# μœ„ segmentation 을 ν†΅ν•΄μ„œ crop 된 뢀뢄이 μ΄λ―Έμ§€λ‚΄μ—μ„œ λͺ‡ν”„λ‘œ μ°¨μ§€ν•˜λŠ”μ§€ κ³„μ‚°ν•©λ‹ˆλ‹€.
# μ•„λž˜ μ½”λ“œλŠ” ν•˜μ–€μƒ‰ 픽셀이 μ—°μ†μ μœΌλ‘œ μ΄μ–΄μ Έμ„œ λ§Œλ“€μ–΄μ§„ 덩어리가 μ „μ²΄μ—μ„œ λͺ‡ν”„λ‘œ μ°¨μ§€ν•˜λŠ”μ§€ κ³„μ‚°ν•©λ‹ˆλ‹€.
# μ•„λž˜ μ½”λ“œλŠ” 덩어리(솑μž₯으둜 μΆ”μ •) 듀이 2개 이상이어도 μ μš©ν• μˆ˜ μžˆμŠ΅λ‹ˆλ‹€.
def mask_percentage(mask_path):
image = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
ret, threshold = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(threshold, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
total_area = image.shape[0] * image.shape[1]
contours_list=contours
contour_areas = [cv2.contourArea(contour) for contour in contours]
percentages = [(area / total_area) * 100 for area in contour_areas]
percentage_list=[]
for i, percentage in enumerate(percentages):
percentage_list.append(percentage)
return contours_list,percentage_list