Spaces:
Sleeping
Sleeping
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
print("test1")
|
9 |
+
processor = DonutProcessor.from_pretrained("ewfian/donut_cn_invoice")
|
10 |
+
print("test2")
|
11 |
+
model = VisionEncoderDecoderModel.from_pretrained("ewfian/donut_cn_invoice")
|
12 |
+
print("test3")
|
13 |
+
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
model.to(device)
|
16 |
+
|
17 |
+
task_prompt = "<s_totalAmountInWords>"
|
18 |
+
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
19 |
+
|
20 |
+
print("test")
|
21 |
+
print(decoder_input_ids.shape)
|
22 |
+
|
23 |
+
def process_document(image):
|
24 |
+
print("test2")
|
25 |
+
|
26 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
27 |
+
|
28 |
+
print(pixel_values.shape)
|
29 |
+
print(pixel_values)
|
30 |
+
|
31 |
+
outputs = model.generate(
|
32 |
+
pixel_values.to(device),
|
33 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
34 |
+
max_length=model.decoder.config.max_position_embeddings,
|
35 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
36 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
37 |
+
use_cache=True,
|
38 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
39 |
+
return_dict_in_generate=True,
|
40 |
+
)
|
41 |
+
|
42 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
43 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
44 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
45 |
+
return processor.token2json(sequence)
|
46 |
+
|
47 |
+
# t = process_document(test_sample)
|
48 |
+
# print(t)
|
49 |
+
|
50 |
+
demo = gr.Interface(
|
51 |
+
fn=process_document,
|
52 |
+
inputs="image",
|
53 |
+
outputs="json",
|
54 |
+
title="Demo: Donut 🍩 for Invioce Parsing",
|
55 |
+
cache_examples=False)
|
56 |
+
|
57 |
+
demo.launch(server_name="0.0.0.0")
|